login
A363431
Number of 123-avoiding stabilized-interval-free permutations of size n.
1
1, 1, 1, 2, 5, 14, 44, 150, 496, 1758, 6018, 21782, 76414, 280448, 1001752, 3714032, 13450270, 50259604, 183995056, 691863078, 2555043320, 9657267848, 35921300392, 136360740016, 510267869416, 1944193285228, 7312488701868, 27950641500876, 105590010259396, 404724123141348, 1534775681029994
OFFSET
0,4
COMMENTS
A stabilized-interval-free (SIF) permutation on [n] = {1, 2, ..., n} is one that does not stabilize any proper subinterval of [n].
LINKS
Daniel Birmajer, Juan B. Gil, Jordan O. Tirrell, and Michael D. Weiner, Pattern-avoiding stabilized-interval-free permutations, arXiv:2306.03155 [math.CO], 2023.
FORMULA
For n>2, a(n) = f_0(n) - f_1(n-1) + f_2(n) - Sum_{k=1..floor((n-3)/2)} C(k)^2*a(n-2*k), where C(k)=binomial(2*k,k)/(k+1) and f_j(m) denotes the number of 123-avoiding permutations of size m having j fixed points.
EXAMPLE
For n=4 the a(4)=5 permutations are 2413, 3142, 3412, 3421, 4312.
CROSSREFS
Cf. A075834.
Sequence in context: A149883 A307786 A360592 * A149884 A149885 A149886
KEYWORD
nonn
AUTHOR
Juan B. Gil, Jun 22 2023
STATUS
approved