login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A270701 Total sum T(n,k) of the sizes of all blocks with maximal element k in all set partitions of {1,2,...,n}; triangle T(n,k), n>=1, 1<=k<=n, read by rows. 23
1, 1, 3, 2, 4, 9, 5, 9, 16, 30, 15, 25, 41, 67, 112, 52, 82, 127, 195, 299, 463, 203, 307, 456, 670, 979, 1429, 2095, 877, 1283, 1845, 2623, 3702, 5204, 7307, 10279, 4140, 5894, 8257, 11437, 15717, 21485, 29278, 39848, 54267, 21147, 29427, 40338, 54692, 73561, 98367, 131007, 174029, 230884, 306298 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,3

LINKS

Alois P. Heinz, Rows n = 1..141, flattened

Wikipedia, Partition of a set

FORMULA

T(n,k) = A270702(n,n-k+1).

EXAMPLE

Row n=3 is [2, 4, 9] = [0+0+0+1+1, 0+2+1+0+1, 3+1+2+2+1] because the set partitions of {1,2,3} are: 123, 12|3, 13|2, 1|23, 1|2|3.

Triangle T(n,k) begins:

:     1;

:     1,    3;

:     2,    4,    9;

:     5,    9,   16,    30;

:    15,   25,   41,    67,   112;

:    52,   82,  127,   195,   299,   463;

:   203,  307,  456,   670,   979,  1429,  2095;

:   877, 1283, 1845,  2623,  3702,  5204,  7307, 10279;

:  4140, 5894, 8257, 11437, 15717, 21485, 29278, 39848, 54267;

MAPLE

b:= proc(n, m, t) option remember; `if`(n=0, [1, 0], add(

     `if`(t=1 and j<>m+1, 0, (p->p+`if`(j=-t or t=1 and j=m+1,

      [0, p[1]], 0))(b(n-1, max(m, j), `if`(t=1 and j=m+1, -j,

     `if`(t<0, t, `if`(t>0, t-1, 0)))))), j=1..m+1))

    end:

T:= (n, k)-> b(n, 0, max(0, 1+n-k))[2]:

seq(seq(T(n, k), k=1..n), n=1..12);

MATHEMATICA

b[n_, m_, t_] := b[n, m, t] = If[n == 0, {1, 0}, Sum[If[t == 1 && j != m+1, 0, Function[p, p + If[j == -t || t == 1 && j == m+1, {0, p[[1]]}, 0]][b[ n-1, Max[m, j], If[t == 1 && j == m+1, -j, If[t < 0, t, If[t > 0, t-1, 0] ]]]]], {j, 1, m+1}]];

T[n_, k_] := b[n, 0, Max[0, 1+n-k]][[2]];

Table[Table[T[n, k], {k, 1, n}], {n, 1, 12}] // Flatten (* Jean-Fran├žois Alcover, Apr 24 2016, translated from Maple *)

CROSSREFS

Columns k=1-10 give: A000110(n-1), A270756, A270757, A270758, A270759, A270760, A270761, A270762, A270763, A270764.

Main and lower diagonals give: A124427, A270765, A270766, A270767, A270768, A270769, A270770, A270771, A270772, A270773.

Row sums give A070071.

Reflected triangle gives A270702.

T(2n-1,n) gives A270703.

Sequence in context: A019916 A201838 A099257 * A083762 A173028 A264985

Adjacent sequences:  A270698 A270699 A270700 * A270702 A270703 A270704

KEYWORD

nonn,tabl

AUTHOR

Alois P. Heinz, Mar 21 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 20 07:17 EDT 2018. Contains 316378 sequences. (Running on oeis4.)