login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A270703
Total sum of the sizes of all blocks with maximal element n in all set partitions of {1,2,...,2n-1}.
3
1, 4, 41, 670, 15717, 492112, 19610565, 961547874, 56562256041, 3914022281500, 313638627550657, 28730918805512678, 2976543225606178893, 345587228510915829224, 44615408909143456529309, 6361213086726610526079402, 995709801367376369056571089
OFFSET
1,2
COMMENTS
Also total sum of the sizes of all blocks with minimal element n in all set partitions of {1,2,...,2n-1}.
LINKS
FORMULA
a(n) = A270701(2n-1,n) = A270702(2n-1,n).
EXAMPLE
a(2) = 4 = 0+2+1+0+1 = sum of the sizes of all blocks with maximal element 2 in all set partitions of {1,2,3}: 123, 12|3, 13|2, 1|23, 1|2|3.
MAPLE
b:= proc(n, m, t) option remember; `if`(n=0, [1, 0], add(
`if`(t=1 and j<>m+1, 0, (p->p+`if`(j=-t or t=1 and j=m+1,
[0, p[1]], 0))(b(n-1, max(m, j), `if`(t=1 and j=m+1, -j,
`if`(t<0, t, `if`(t>0, t-1, 0)))))), j=1..m+1))
end:
a:= n-> b(2*n-1, 0, n)[2]:
seq(a(n), n=1..20);
MATHEMATICA
b[n_, m_, t_] := b[n, m, t] = If[n==0, {1, 0}, Sum[If[t==1 && j != m+1, 0, Function[p, p+If[j == -t || t == 1 && j == m+1, {0, p[[1]]}, 0]][b[n-1, Max[m, j], If[t == 1 && j == m+1, -j, If[t<0, t, If[t>0, t-1, 0]]]]]], {j, 1, m+1}]]; a[n_] := b[2*n-1, 0, n][[2]]; Table[a[n], {n, 1, 20}] (* Jean-François Alcover, Feb 15 2017, translated from Maple *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Mar 21 2016
STATUS
approved