login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Total sum of the sizes of all blocks with maximal element n in all set partitions of {1,2,...,2n-1}.
3

%I #16 Feb 15 2017 11:27:10

%S 1,4,41,670,15717,492112,19610565,961547874,56562256041,3914022281500,

%T 313638627550657,28730918805512678,2976543225606178893,

%U 345587228510915829224,44615408909143456529309,6361213086726610526079402,995709801367376369056571089

%N Total sum of the sizes of all blocks with maximal element n in all set partitions of {1,2,...,2n-1}.

%C Also total sum of the sizes of all blocks with minimal element n in all set partitions of {1,2,...,2n-1}.

%H Alois P. Heinz, <a href="/A270703/b270703.txt">Table of n, a(n) for n = 1..200</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Partition_of_a_set">Partition of a set</a>

%F a(n) = A270701(2n-1,n) = A270702(2n-1,n).

%e a(2) = 4 = 0+2+1+0+1 = sum of the sizes of all blocks with maximal element 2 in all set partitions of {1,2,3}: 123, 12|3, 13|2, 1|23, 1|2|3.

%p b:= proc(n, m, t) option remember; `if`(n=0, [1, 0], add(

%p `if`(t=1 and j<>m+1, 0, (p->p+`if`(j=-t or t=1 and j=m+1,

%p [0, p[1]], 0))(b(n-1, max(m, j), `if`(t=1 and j=m+1, -j,

%p `if`(t<0, t, `if`(t>0, t-1, 0)))))), j=1..m+1))

%p end:

%p a:= n-> b(2*n-1, 0, n)[2]:

%p seq(a(n), n=1..20);

%t b[n_, m_, t_] := b[n, m, t] = If[n==0, {1, 0}, Sum[If[t==1 && j != m+1, 0, Function[p, p+If[j == -t || t == 1 && j == m+1, {0, p[[1]]}, 0]][b[n-1, Max[m, j], If[t == 1 && j == m+1, -j, If[t<0, t, If[t>0, t-1, 0]]]]]], {j, 1, m+1}]]; a[n_] := b[2*n-1, 0, n][[2]]; Table[a[n], {n, 1, 20}] (* _Jean-François Alcover_, Feb 15 2017, translated from Maple *)

%Y Cf. A000110, A270701, A270702.

%K nonn

%O 1,2

%A _Alois P. Heinz_, Mar 21 2016