login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A270702 Total sum T(n,k) of the sizes of all blocks with minimal element k in all set partitions of {1,2,...,n}; triangle T(n,k), n>=1, 1<=k<=n, read by rows. 23
1, 3, 1, 9, 4, 2, 30, 16, 9, 5, 112, 67, 41, 25, 15, 463, 299, 195, 127, 82, 52, 2095, 1429, 979, 670, 456, 307, 203, 10279, 7307, 5204, 3702, 2623, 1845, 1283, 877, 54267, 39848, 29278, 21485, 15717, 11437, 8257, 5894, 4140, 306298, 230884, 174029, 131007, 98367, 73561, 54692, 40338, 29427, 21147 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Alois P. Heinz, Rows n = 1..141, flattened

Wikipedia, Partition of a set

FORMULA

T(n,k) = A270701(n,n-k+1).

EXAMPLE

Row n=3 is [9, 4, 2] = [3+2+2+1+1, 0+0+1+2+1, 0+1+0+0+1] because the set partitions of {1,2,3} are: 123, 12|3, 13|2, 1|23, 1|2|3.

Triangle T(n,k) begins:

:      1;

:      3,     1;

:      9,     4,     2;

:     30,    16,     9,     5;

:    112,    67,    41,    25,    15;

:    463,   299,   195,   127,    82,    52;

:   2095,  1429,   979,   670,   456,   307,  203;

:  10279,  7307,  5204,  3702,  2623,  1845, 1283,  877;

:  54267, 39848, 29278, 21485, 15717, 11437, 8257, 5894, 4140;

MAPLE

b:= proc(n, m, t) option remember; `if`(n=0, [1, 0], add(

     `if`(t=1 and j<>m+1, 0, (p->p+`if`(j=-t or t=1 and j=m+1,

      [0, p[1]], 0))(b(n-1, max(m, j), `if`(t=1 and j=m+1, -j,

     `if`(t<0, t, `if`(t>0, t-1, 0)))))), j=1..m+1))

    end:

T:= (n, k)-> b(n, 0, k)[2]:

seq(seq(T(n, k), k=1..n), n=1..12);

MATHEMATICA

b[n_, m_, t_] := b[n, m, t] = If[n == 0, {1, 0}, Sum[If[t == 1 && j != m + 1, 0, Function[p, p + If[j == -t || t == 1 && j == m + 1, {0, p[[1]]}, 0] ][b[n - 1, Max[m, j], If[t == 1 && j == m + 1, -j, If[t < 0, t, If[t > 0, t - 1, 0]]]]]], {j, 1, m + 1}]];

T[n_, k_] := b[n, 0, k][[2]];

Table[Table[T[n, k], {k, 1, n}], {n, 1, 12}] // Flatten (* Jean-Fran├žois Alcover, Apr 24 2016, translated from Maple *)

CROSSREFS

Columns k=1-10 give: A124427, A270765, A270766, A270767, A270768, A270769, A270770, A270771, A270772, A270773.

Main and lower diagonals give: A000110(n-1), A270756, A270757, A270758, A270759, A270760, A270761, A270762, A270763, A270764.

Row sums give A070071.

Reflected triangle gives A270701.

T(2n-1,n) gives A270703.

Sequence in context: A067417 A187887 A016577 * A124573 A127550 A021317

Adjacent sequences:  A270699 A270700 A270701 * A270703 A270704 A270705

KEYWORD

nonn,tabl

AUTHOR

Alois P. Heinz, Mar 21 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 13 19:25 EST 2018. Contains 317149 sequences. (Running on oeis4.)