login
A270702
Total sum T(n,k) of the sizes of all blocks with minimal element k in all set partitions of {1,2,...,n}; triangle T(n,k), n>=1, 1<=k<=n, read by rows.
23
1, 3, 1, 9, 4, 2, 30, 16, 9, 5, 112, 67, 41, 25, 15, 463, 299, 195, 127, 82, 52, 2095, 1429, 979, 670, 456, 307, 203, 10279, 7307, 5204, 3702, 2623, 1845, 1283, 877, 54267, 39848, 29278, 21485, 15717, 11437, 8257, 5894, 4140, 306298, 230884, 174029, 131007, 98367, 73561, 54692, 40338, 29427, 21147
OFFSET
1,2
LINKS
FORMULA
T(n,k) = A270701(n,n-k+1).
EXAMPLE
Row n=3 is [9, 4, 2] = [3+2+2+1+1, 0+0+1+2+1, 0+1+0+0+1] because the set partitions of {1,2,3} are: 123, 12|3, 13|2, 1|23, 1|2|3.
Triangle T(n,k) begins:
: 1;
: 3, 1;
: 9, 4, 2;
: 30, 16, 9, 5;
: 112, 67, 41, 25, 15;
: 463, 299, 195, 127, 82, 52;
: 2095, 1429, 979, 670, 456, 307, 203;
: 10279, 7307, 5204, 3702, 2623, 1845, 1283, 877;
: 54267, 39848, 29278, 21485, 15717, 11437, 8257, 5894, 4140;
MAPLE
b:= proc(n, m, t) option remember; `if`(n=0, [1, 0], add(
`if`(t=1 and j<>m+1, 0, (p->p+`if`(j=-t or t=1 and j=m+1,
[0, p[1]], 0))(b(n-1, max(m, j), `if`(t=1 and j=m+1, -j,
`if`(t<0, t, `if`(t>0, t-1, 0)))))), j=1..m+1))
end:
T:= (n, k)-> b(n, 0, k)[2]:
seq(seq(T(n, k), k=1..n), n=1..12);
MATHEMATICA
b[n_, m_, t_] := b[n, m, t] = If[n == 0, {1, 0}, Sum[If[t == 1 && j != m + 1, 0, Function[p, p + If[j == -t || t == 1 && j == m + 1, {0, p[[1]]}, 0] ][b[n - 1, Max[m, j], If[t == 1 && j == m + 1, -j, If[t < 0, t, If[t > 0, t - 1, 0]]]]]], {j, 1, m + 1}]];
T[n_, k_] := b[n, 0, k][[2]];
Table[Table[T[n, k], {k, 1, n}], {n, 1, 12}] // Flatten (* Jean-François Alcover, Apr 24 2016, translated from Maple *)
CROSSREFS
Main and lower diagonals give: A000110(n-1), A270756, A270757, A270758, A270759, A270760, A270761, A270762, A270763, A270764.
Row sums give A070071.
Reflected triangle gives A270701.
T(2n-1,n) gives A270703.
Sequence in context: A187887 A016577 A308704 * A124573 A127550 A021317
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Mar 21 2016
STATUS
approved