OFFSET
1,2
LINKS
Alois P. Heinz, Rows n = 1..141, flattened
Wikipedia, Partition of a set
FORMULA
T(n,k) = A270701(n,n-k+1).
EXAMPLE
Row n=3 is [9, 4, 2] = [3+2+2+1+1, 0+0+1+2+1, 0+1+0+0+1] because the set partitions of {1,2,3} are: 123, 12|3, 13|2, 1|23, 1|2|3.
Triangle T(n,k) begins:
: 1;
: 3, 1;
: 9, 4, 2;
: 30, 16, 9, 5;
: 112, 67, 41, 25, 15;
: 463, 299, 195, 127, 82, 52;
: 2095, 1429, 979, 670, 456, 307, 203;
: 10279, 7307, 5204, 3702, 2623, 1845, 1283, 877;
: 54267, 39848, 29278, 21485, 15717, 11437, 8257, 5894, 4140;
MAPLE
b:= proc(n, m, t) option remember; `if`(n=0, [1, 0], add(
`if`(t=1 and j<>m+1, 0, (p->p+`if`(j=-t or t=1 and j=m+1,
[0, p[1]], 0))(b(n-1, max(m, j), `if`(t=1 and j=m+1, -j,
`if`(t<0, t, `if`(t>0, t-1, 0)))))), j=1..m+1))
end:
T:= (n, k)-> b(n, 0, k)[2]:
seq(seq(T(n, k), k=1..n), n=1..12);
MATHEMATICA
b[n_, m_, t_] := b[n, m, t] = If[n == 0, {1, 0}, Sum[If[t == 1 && j != m + 1, 0, Function[p, p + If[j == -t || t == 1 && j == m + 1, {0, p[[1]]}, 0] ][b[n - 1, Max[m, j], If[t == 1 && j == m + 1, -j, If[t < 0, t, If[t > 0, t - 1, 0]]]]]], {j, 1, m + 1}]];
T[n_, k_] := b[n, 0, k][[2]];
Table[Table[T[n, k], {k, 1, n}], {n, 1, 12}] // Flatten (* Jean-François Alcover, Apr 24 2016, translated from Maple *)
CROSSREFS
Columns k=1-10 give: A124427, A270765, A270766, A270767, A270768, A270769, A270770, A270771, A270772, A270773.
Main and lower diagonals give: A000110(n-1), A270756, A270757, A270758, A270759, A270760, A270761, A270762, A270763, A270764.
Row sums give A070071.
Reflected triangle gives A270701.
T(2n-1,n) gives A270703.
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Mar 21 2016
STATUS
approved