OFFSET
0,2
FORMULA
a(n,k) = [x^n] 1/((1-x)*sqrt(1-4*x))*(x/(1-x))^k.
Recurrence: a(n+1,k+1) = a(n,k+1) + a(n,k).
a(n,k) = sum(binomial(n-i,k)*binomial(2*i,i),i=0..n).
G.f.: 1/(sqrt(1-4*x)*(1-x-x*y)).
EXAMPLE
Triangle begins:
1,
3,1,
9,4,1,
29,13,5,1,
99,42,18,6,1,
351,141,60,24,7,1,
1275,492,201,84,31,8,1,
MATHEMATICA
Select[Flatten[Table[Sum[Binomial[n-i, k]Binomial[2i, i], {i, 0, n}], {n, 0, 10}, {k, 0, 10}]], #!=0&] (* Harvey P. Dale, Jul 05 2012 *)
PROG
(Maxima) create_list(sum(binomial(n-i, k)*binomial(2*i, i), i, 0, n), n, 0, 8, k, 0, n);
CROSSREFS
KEYWORD
AUTHOR
Emanuele Munarini, Mar 15 2011
EXTENSIONS
Mathematica program corrected by Harvey P. Dale, Jul 05 2012
Comment added and comment corrected by Michel Marcus, Jun 23 2013
STATUS
approved