login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A187887
Riordan matrix (1/((1-x)*sqrt(1-4*x)),x/(1-x)).
2
1, 3, 1, 9, 4, 1, 29, 13, 5, 1, 99, 42, 18, 6, 1, 351, 141, 60, 24, 7, 1, 1275, 492, 201, 84, 31, 8, 1, 4707, 1767, 693, 285, 115, 39, 9, 1, 17577, 6474, 2460, 978, 400, 154, 48, 10, 1, 66197, 24051, 8934, 3438, 1378, 554, 202, 58, 11, 1, 250953, 90248, 32985, 12372, 4816, 1932, 756, 260, 69, 12, 1
OFFSET
0,2
COMMENTS
Row sums are A082590.
First column is A006134.
FORMULA
a(n,k) = [x^n] 1/((1-x)*sqrt(1-4*x))*(x/(1-x))^k.
Recurrence: a(n+1,k+1) = a(n,k+1) + a(n,k).
a(n,k) = sum(binomial(n-i,k)*binomial(2*i,i),i=0..n).
G.f.: 1/(sqrt(1-4*x)*(1-x-x*y)).
EXAMPLE
Triangle begins:
1,
3,1,
9,4,1,
29,13,5,1,
99,42,18,6,1,
351,141,60,24,7,1,
1275,492,201,84,31,8,1,
MATHEMATICA
Select[Flatten[Table[Sum[Binomial[n-i, k]Binomial[2i, i], {i, 0, n}], {n, 0, 10}, {k, 0, 10}]], #!=0&] (* Harvey P. Dale, Jul 05 2012 *)
PROG
(Maxima) create_list(sum(binomial(n-i, k)*binomial(2*i, i), i, 0, n), n, 0, 8, k, 0, n);
CROSSREFS
Sequence in context: A285280 A285266 A067417 * A016577 A308704 A270702
KEYWORD
nonn,easy,tabl
AUTHOR
Emanuele Munarini, Mar 15 2011
EXTENSIONS
Mathematica program corrected by Harvey P. Dale, Jul 05 2012
Comment added and comment corrected by Michel Marcus, Jun 23 2013
STATUS
approved