

A187886


a(n) = the smallest prime p such that np + 1 is a square, or 0 if no such square exists.


2



3, 0, 5, 2, 3, 0, 5, 3, 7, 0, 13, 2, 11, 0, 13, 3, 19, 0, 17, 0, 3, 0, 0, 2, 23, 0, 29, 0, 31, 0, 29, 7, 3, 0, 37, 0, 0, 0, 5, 2, 43, 0, 41, 0, 43, 0, 0, 11, 47, 0, 5, 0, 0, 0, 53, 3, 7, 0, 61, 2, 59, 0, 61, 17, 3, 0, 0, 0, 7, 0, 73, 5, 71, 0, 73, 0, 79, 0, 0, 19, 79, 0, 0, 2, 3, 0, 89, 5, 0, 0
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

if n = A007510(k) (Single primes), then a(n) = 0.


LINKS

Table of n, a(n) for n=1..90.


EXAMPLE

a(6) = 0 because there is no prime p such that 6*p + 1 is a square.
a(11) = 13 because 11*13 + 1 = 144 is a square.


MAPLE

with(numtheory): for k from 1 to 120 do : q:=0:for p from 1 to 200 do : x:=sqrt(k*p+1)
: if x=trunc(x) and type(p, prime)=true and q=0 then q:=1: printf(`%d, `, p):else
fi:od:if q=0 then printf(`%d, `, q):else fi:od:


CROSSREFS

Cf. A007510, A187884, 187885.
Sequence in context: A226770 A185782 A304027 * A324103 A130054 A236146
Adjacent sequences: A187883 A187884 A187885 * A187887 A187888 A187889


KEYWORD

nonn,base


AUTHOR

Michel Lagneau, Mar 15 2011


STATUS

approved



