login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A118896
Number of powerful numbers <= 10^n.
6
1, 4, 14, 54, 185, 619, 2027, 6553, 21044, 67231, 214122, 680330, 2158391, 6840384, 21663503, 68575557, 217004842, 686552743, 2171766332, 6869227848, 21725636644, 68709456167, 217293374285, 687174291753, 2173105517385, 6872112993377, 21731852479862, 68722847672629, 217322225558934, 687236449779456, 2173239433013146
OFFSET
0,2
COMMENTS
These numbers agree with the asymptotic formula c*sqrt(x), with c=2.1732...(A090699). - T. D. Noe, May 09 2006
Bateman & Grosswald proved that the number of powerful numbers up to x is zeta(3/2)/zeta(3) * x^1/2 + zeta(2/3)/zeta(2) * x^1/3 + o(x^1/6). This approximates the series very closely: up to a(24), all absolute errors are less than 75. - Charles R Greathouse IV, Sep 23 2008
LINKS
Charles R Greathouse IV and Hiroaki Yamanouchi, Table of n, a(n) for n = 0..45 (terms a(0)-a(32) from Charles R Greathouse IV)
Michael Filaseta and Ognian Trifonov, The distribution of squarefull numbers in short intervals, Acta Arithmetica 67 (1994), pp. 323-333.
Paul T. Bateman and Emil Grosswald, On a theorem of Erdős and Szekeres, Illinois J. Math. 2:1 (1958), p. 88-98.
Eric Weisstein's World of Mathematics, Powerful Number
FORMULA
Pi(x) = Sum_{i=1..x^(1/3)} floor(sqrt(x/i^3)) only if i is squarefree. - Robert G. Wilson v, Aug 12 2014
MAPLE
f:= m -> nops({seq(seq(a^2*b^3, b=1..floor((m/a^2)^(1/3))), a=1..floor(sqrt(m)))}):
seq(f(10^n), n=0..10); # Robert Israel, Aug 12 2014
MATHEMATICA
f[n_] := Block[{max = 10^n}, Length@ Union@ Flatten@ Table[ a^2*b^3, {b, max^(1/3)}, {a, Sqrt[ max/b^3]}]]; Array[f, 13, 0] (* Robert G. Wilson v, Aug 11 2014 *)
powerfulNumberPi[n_] := Sum[ If[ SquareFreeQ@ i, Floor[ Sqrt[ n/i^3]], 0], {i, n^(1/3)}]; Array[ powerfulNumberPi[10^#] &, 27, 0] (* Robert G. Wilson v, Aug 12 2014 *)
PROG
(PARI) a(n)=n=10^n; sum(k=1, floor((n+.5)^(1/3)), if(issquarefree(k), sqrtint(n\k^3))) \\ Charles R Greathouse IV, Sep 23 2008
(Python)
from math import isqrt
from sympy import integer_nthroot, factorint
def A118896(n):
m = 10**n
return sum(isqrt(m//x**3) for x in range(1, integer_nthroot(m, 3)[0]+1) if max(factorint(x).values(), default=0)<=1) # Chai Wah Wu, May 13 2023
(Python)
# faster program
def A118896(n):
def squarefreepi(n): return int(sum(mobius(k)*(n//k**2) for k in range(1, isqrt(n)+1)))
m, c, l = 10**n, 0, 0
j = isqrt(m)
while j>1:
k2 = integer_nthroot(m//j**2, 3)[0]+1
w = squarefreepi(k2-1)
c += j*(w-l)
l, j = w, isqrt(m//k2**3)
c += squarefreepi(integer_nthroot(m, 3)[0])-l
return c # Chai Wah Wu, Sep 09 2024
CROSSREFS
Sequence in context: A308555 A000651 A192247 * A145211 A060898 A180142
KEYWORD
nonn
AUTHOR
Eric W. Weisstein, May 05 2006
EXTENSIONS
More terms from T. D. Noe, May 09 2006
a(13)-a(24) from Charles R Greathouse IV, Sep 23 2008
a(25)-a(29) from Charles R Greathouse IV, May 30 2011
a(30) from Charles R Greathouse IV, May 31 2011
STATUS
approved