login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of powerful numbers <= 10^n.
6

%I #67 Sep 10 2024 00:24:35

%S 1,4,14,54,185,619,2027,6553,21044,67231,214122,680330,2158391,

%T 6840384,21663503,68575557,217004842,686552743,2171766332,6869227848,

%U 21725636644,68709456167,217293374285,687174291753,2173105517385,6872112993377,21731852479862,68722847672629,217322225558934,687236449779456,2173239433013146

%N Number of powerful numbers <= 10^n.

%C These numbers agree with the asymptotic formula c*sqrt(x), with c=2.1732...(A090699). - _T. D. Noe_, May 09 2006

%C Bateman & Grosswald proved that the number of powerful numbers up to x is zeta(3/2)/zeta(3) * x^1/2 + zeta(2/3)/zeta(2) * x^1/3 + o(x^1/6). This approximates the series very closely: up to a(24), all absolute errors are less than 75. - _Charles R Greathouse IV_, Sep 23 2008

%H Charles R Greathouse IV and Hiroaki Yamanouchi, <a href="/A118896/b118896.txt">Table of n, a(n) for n = 0..45</a> (terms a(0)-a(32) from Charles R Greathouse IV)

%H Michael Filaseta and Ognian Trifonov, <a href="http://matwbn.icm.edu.pl/ksiazki/aa/aa67/aa6743.pdf">The distribution of squarefull numbers in short intervals</a>, Acta Arithmetica 67 (1994), pp. 323-333.

%H Paul T. Bateman and Emil Grosswald, <a href="http://projecteuclid.org/euclid.ijm/1255380836">On a theorem of Erdős and Szekeres</a>, Illinois J. Math. 2:1 (1958), p. 88-98.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PowerfulNumber.html">Powerful Number</a>

%F Pi(x) = Sum_{i=1..x^(1/3)} floor(sqrt(x/i^3)) only if i is squarefree. - _Robert G. Wilson v_, Aug 12 2014

%p f:= m -> nops({seq(seq(a^2*b^3, b=1..floor((m/a^2)^(1/3))),a=1..floor(sqrt(m)))}):

%p seq(f(10^n),n=0..10); # _Robert Israel_, Aug 12 2014

%t f[n_] := Block[{max = 10^n}, Length@ Union@ Flatten@ Table[ a^2*b^3, {b, max^(1/3)}, {a, Sqrt[ max/b^3]}]]; Array[f, 13, 0] (* _Robert G. Wilson v_, Aug 11 2014 *)

%t powerfulNumberPi[n_] := Sum[ If[ SquareFreeQ@ i, Floor[ Sqrt[ n/i^3]], 0], {i, n^(1/3)}]; Array[ powerfulNumberPi[10^#] &, 27, 0] (* _Robert G. Wilson v_, Aug 12 2014 *)

%o (PARI) a(n)=n=10^n;sum(k=1, floor((n+.5)^(1/3)), if(issquarefree(k), sqrtint(n\k^3))) \\ _Charles R Greathouse IV_, Sep 23 2008

%o (Python)

%o from math import isqrt

%o from sympy import integer_nthroot, factorint

%o def A118896(n):

%o m = 10**n

%o return sum(isqrt(m//x**3) for x in range(1,integer_nthroot(m,3)[0]+1) if max(factorint(x).values(),default=0)<=1) # _Chai Wah Wu_, May 13 2023

%o (Python)

%o # faster program

%o def A118896(n):

%o def squarefreepi(n): return int(sum(mobius(k)*(n//k**2) for k in range(1, isqrt(n)+1)))

%o m, c, l = 10**n, 0, 0

%o j = isqrt(m)

%o while j>1:

%o k2 = integer_nthroot(m//j**2,3)[0]+1

%o w = squarefreepi(k2-1)

%o c += j*(w-l)

%o l, j = w, isqrt(m//k2**3)

%o c += squarefreepi(integer_nthroot(m,3)[0])-l

%o return c # _Chai Wah Wu_, Sep 09 2024

%Y Cf. A001694, A090699.

%K nonn

%O 0,2

%A _Eric W. Weisstein_, May 05 2006

%E More terms from _T. D. Noe_, May 09 2006

%E a(13)-a(24) from _Charles R Greathouse IV_, Sep 23 2008

%E a(25)-a(29) from _Charles R Greathouse IV_, May 30 2011

%E a(30) from _Charles R Greathouse IV_, May 31 2011