login
A214997
Power ceiling-floor sequence of 2+sqrt(2).
4
4, 13, 45, 153, 523, 1785, 6095, 20809, 71047, 242569, 828183, 2827593, 9654007, 32960841, 112535351, 384219721, 1311808183, 4478793289, 15291556791, 52208640585, 178251448759, 608588513865, 2077851157943, 7094227604041, 24221208100279, 82696377193033
OFFSET
0,1
COMMENTS
See A214992 for a discussion of power ceiling-floor sequence and power ceiling-floor function, p3(x) = limit of a(n,x)/x^n. The present sequence is a(n,r), where r = 2+sqrt(2), and the limit p3(r) = 3.8478612632206289...
a(n) is the number of words over {0,1,2,3} of length n+1 that avoid 23, 32, and 33. As an example, a(2)=45 corresponds to the 45 such words of length 3; these are all 64 words except for the 19 prohibited cases which are 320, 321, 322, 323, 230, 231, 232, 233, 330, 331, 332, 333, 023, 123, 223, 032, 132, 033, 133. - Greg Dresden and Mina BH Arsanious, Aug 09 2023
FORMULA
a(n) = floor(x*a(n-1)) if n is odd, a(n) = ceiling(x*a(n-1)) if n is even, where x = 2+sqrt(2) and a(0) = ceiling(x).
a(n) = 3*a(n-1) + 2*a(n-2) - 2*a(n-3).
G.f.: (4 + x - 2*x^2)/(1 - 3*x - 2*x^2 + 2*x^3).
a(n) = (1/14)*(2*(-1)^n + (27-19*sqrt(2))*(2-sqrt(2))^n + (2+sqrt(2))^n*(27+19*sqrt(2))). - Colin Barker, Nov 13 2017
EXAMPLE
a(0) = ceiling(r) = 4, where r = 2+sqrt(2);
a(1) = floor(4*r) = 13; a(2) = ceiling(13*r) = 45.
MATHEMATICA
(See A214996.)
CoefficientList[Series[(4+x-2*x^2)/(1-3*x-2*x^2+2*x^3), {x, 0, 50}], x] (* G. C. Greubel, Feb 01 2018 *)
PROG
(PARI) Vec((4 + x - 2*x^2) / ((1 + x)*(1 - 4*x + 2*x^2)) + O(x^40)) \\ Colin Barker, Nov 13 2017
(Magma) Q:=Rationals(); R<x>:=PowerSeriesRing(Q, 40); Coefficients(R!((4 +x-2*x^2)/(1-3*x-2*x^2+2*x^3))) // G. C. Greubel, Feb 01 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Nov 10 2012
STATUS
approved