login
A049410
A triangle of numbers related to triangle A049325.
5
1, 3, 1, 6, 9, 1, 6, 51, 18, 1, 0, 210, 195, 30, 1, 0, 630, 1575, 525, 45, 1, 0, 1260, 10080, 6825, 1155, 63, 1, 0, 1260, 51660, 71505, 21840, 2226, 84, 1, 0, 0, 207900, 623700, 333585, 57456, 3906, 108, 1, 0, 0, 623700, 4573800, 4293135, 1195425, 131670
OFFSET
1,2
COMMENTS
a(n,1)= A008279(3,n-1). a(n,m)=: S1(-3; n,m), a member of a sequence of lower triangular Jabotinsky matrices, including S1(1; n,m)= A008275 (signed Stirling first kind), S1(2; n,m)= A008297(n,m) (signed Lah numbers). a(n,m) matrix is inverse to signed matrix ((-1)^(n-m))*A000369(n,m).
The monic row polynomials E(n,x) := sum(a(n,m)*x^m,m=1..n), E(0,x) := 1 are exponential convolution polynomials (see A039692 for the definition and a Knuth reference).
Also the inverse Bell transform of the quadruple factorial numbers Product_{k=0..n-1} (4*k+3) (A008545) adding 1,0,0,0,... as column 0. For the definition of the Bell transform see A264428 and for cross-references A265604. - Peter Luschny, Dec 31 2015
LINKS
Wolfdieter Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
FORMULA
a(n, m) = n!*A049325(n, m)/(m!*4^(n-m)); a(n, m) = (4*m-n+1)*a(n-1, m) + a(n-1, m-1), n >= m >= 1; a(n, m)=0, n<m; a(n, 0) := 0; a(1, 1)=1. E.g.f. for m-th column: (((-1+(1+x)^4)/4)^m)/m!.
EXAMPLE
Triangle begins:
{1};
{3,1};
{6,9,1};
{6,51,18,1};
...
E.g. row polynomial E(3,x)= 6*x+9*x^2+x^3.
MATHEMATICA
rows = 10;
t = Table[Product[4k+3, {k, 0, n-1}], {n, 0, rows}];
T[n_, k_] := BellY[n, k, t];
M = Inverse[Array[T, {rows, rows}]] // Abs;
A049325 = Table[M[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 22 2018, after Peter Luschny *)
PROG
(Sage) # uses[inverse_bell_transform from A265605]
# Adds a column 1, 0, 0, 0, ... at the left side of the triangle.
multifact_4_3 = lambda n: prod(4*k + 3 for k in (0..n-1))
inverse_bell_matrix(multifact_4_3, 9) # Peter Luschny, Dec 31 2015
CROSSREFS
Row sums give A049426.
Sequence in context: A257259 A074475 A144877 * A013610 A008573 A089710
KEYWORD
easy,nonn,tabl
STATUS
approved