The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A265605 Triangle read by rows: The inverse Bell transform of the triple factorial numbers 3^n*n! (A032031). 6
 1, 0, 1, 0, 1, 1, 0, -1, 3, 1, 0, 3, -1, 6, 1, 0, -15, 5, 5, 10, 1, 0, 105, -35, 0, 25, 15, 1, 0, -945, 315, -35, 0, 70, 21, 1, 0, 10395, -3465, 490, -35, 70, 154, 28, 1, 0, -135135, 45045, -6895, 630, -105, 378, 294, 36, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,9 LINKS Peter Luschny, The Bell transform Richell O. Celeste, Roberto B. Corcino, Ken Joffaniel M. Gonzales. Two Approaches to Normal Order Coefficients. Journal of Integer Sequences, Vol. 20 (2017), Article 17.3.5. EXAMPLE [ 1] [ 0,    1] [ 0,    1,    1] [ 0,   -1,    3,    1] [ 0,    3,   -1,    6,    1] [ 0,  -15,    5,    5,   10,    1] [ 0,  105,  -35,    0,   25,   15,    1] [ 0, -945,  315,  -35,    0,   70,   21,    1] PROG (Sage) # uses[bell_transform from A264428] def inverse_bell_matrix(generator, dim):     G = [generator(k) for k in srange(dim)]     row = lambda n: bell_transform(n, G)     M = matrix(ZZ, [row(n)+[0]*(dim-n-1) for n in srange(dim)]).inverse()     return matrix(ZZ, dim, lambda n, k: (-1)^(n-k)*M[n, k]) multifact_3_1 = lambda n: prod(3*k + 1 for k in (0..n-1)) print(inverse_bell_matrix(multifact_3_1, 8)) CROSSREFS Cf. A032031, A264428, A264429. Inverse Bell transforms of other multifactorials are: A048993, A049404, A049410, A075497, A075499, A075498, A119275, A122848, A265604. Sequence in context: A058600 A133704 A160019 * A035629 A099546 A036870 Adjacent sequences:  A265602 A265603 A265604 * A265606 A265607 A265608 KEYWORD sign,tabl AUTHOR Peter Luschny, Dec 30 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 17 16:03 EDT 2021. Contains 343980 sequences. (Running on oeis4.)