login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A160019
Triangle: Lodumo_2 applied to each row of Pascal's triangle .
3
1, 1, 3, 1, 0, 3, 1, 3, 5, 7, 1, 0, 2, 4, 3, 1, 3, 0, 2, 5, 7, 1, 0, 3, 2, 5, 4, 7, 1, 3, 5, 7, 9, 11, 13, 15, 1, 0, 2, 4, 6, 8, 10, 12, 3, 1, 3, 0, 2, 4, 6, 8, 10, 5, 7, 1, 0, 3, 2, 4, 6, 8, 10, 5, 12, 7, 1, 3, 5, 7, 0, 2, 4, 6, 9, 11, 13, 15, 1, 0, 2, 4, 3, 6, 8, 10, 5, 12, 14, 16, 7
OFFSET
0,3
LINKS
FORMULA
T(n,0)=A000012(n)=1; T(n,1)=A010674(n). - Philippe Deléham, Nov 15 2011
EXAMPLE
Triangle begins:
1;
1, 3;
1, 0, 3;
1, 3, 5, 7;
1, 0, 2, 4, 3;
1, 3, 0, 2, 5, 7; ...
PROG
(PARI) \\ here S(n, k) is A047999.
S(n, k)={bitand(n-k, k)==0}
row(n)={my(v=vector(n+1), b=0); for(k=0, n, if(S(n, k), b++; v[1+k]=2*b-1, v[1+k]=2*(k-b))); v}
{ for(n=0, 10, print(row(n))) } \\ Andrew Howroyd, Feb 02 2020
CROSSREFS
Row sums are A160020.
Sequence in context: A035674 A058600 A133704 * A227054 A265605 A035629
KEYWORD
easy,nonn,tabl
AUTHOR
Philippe Deléham, Apr 29 2009, May 02 2009
STATUS
approved