login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A160021
a(n)=2^(2^n)+33, Fermat numbers of order 33.
1
35, 37, 49, 289, 65569, 4294967329, 18446744073709551649, 340282366920938463463374607431768211489, 115792089237316195423570985008687907853269984665640564039457584007913129639969
OFFSET
1,1
COMMENTS
Fermat numbers of order m are defined by F(n,m) = 2^(2^n)+m = A001146(n)+m.
F(1,33) = 37 is the only prime in this sequence. (If n is even, 7 divides F(n,33). For n > 2, 17 divides F(n,33). Proofs are in the link.)
LINKS
MATHEMATICA
Table[(2^(2^n) + 33), {n, 0, 15}] (* Vincenzo Librandi, Jan 09 2013 *)
PROG
(PARI) g(n) = for(x=0, n, y=2^(2^x)+33; print1(y", "))
(Magma) [2^(2^n)+33: n in [0..11]]; // Vincenzo Librandi, Jan 09 2013
CROSSREFS
Cf. A130730 (order 7).
Sequence in context: A064993 A041611 A160775 * A172016 A064610 A030589
KEYWORD
nonn
AUTHOR
Cino Hilliard, Apr 30 2009
EXTENSIONS
Edited by R. J. Mathar, May 08 2009
STATUS
approved