login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A261363
Triangle read by rows: partial row sums of Sierpinski's triangle.
7
1, 1, 2, 1, 1, 2, 1, 2, 3, 4, 1, 1, 1, 1, 2, 1, 2, 2, 2, 3, 4, 1, 1, 2, 2, 3, 3, 4, 1, 2, 3, 4, 5, 6, 7, 8, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 3, 4, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 4, 1, 2, 3, 4, 4, 4, 4, 4, 5, 6, 7, 8, 1, 1, 1, 1, 2, 2, 2, 2
OFFSET
0,3
COMMENTS
T(n,n) = number of distinct terms in row n = number of odd terms in row n+1 = A001316(n);
central terms, for n > 0: T(2*n,n) = A048896(n-1).
LINKS
EXAMPLE
. n | Sierpinski: A047999(n,*) | Partial row sums: T(n,*)
. ----+----------------------------+----------------------------
. 0 | 1 | 1
. 1 | 1 1 | 1 2
. 2 | 1 0 1 | 1 1 2
. 3 | 1 1 1 1 | 1 2 3 4
. 4 | 1 0 0 0 1 | 1 1 1 1 2
. 5 | 1 1 0 0 1 1 | 1 2 2 2 3 4
. 6 | 1 0 1 0 1 0 1 | 1 1 2 2 3 3 4
. 7 | 1 1 1 1 1 1 1 1 | 1 2 3 4 5 6 7 8
. 8 | 1 0 0 0 0 0 0 0 1 | 1 1 1 1 1 1 1 1 2
. 9 | 1 1 0 0 0 0 0 0 1 1 | 1 2 2 2 2 2 2 2 3 4
. 10 | 1 0 1 0 0 0 0 0 1 0 1 | 1 1 2 2 2 2 2 2 3 3 4
. 11 | 1 1 1 1 0 0 0 0 1 1 1 1 | 1 2 3 4 4 4 4 4 5 6 7 8
. 12 | 1 0 0 0 1 0 0 0 1 0 0 0 1 | 1 1 1 1 2 2 2 2 3 3 3 3 4 .
PROG
(Haskell)
a261363 n k = a261363_tabl !! n !! k
a261363_row n = a261363_tabl !! n
a261363_tabl = map (scanl1 (+)) a047999_tabl
CROSSREFS
Cf. A047999, A008949, A048896 (central terms), A001316 (right edge), A261366.
Sequence in context: A153907 A029306 A337511 * A341216 A116491 A131325
KEYWORD
nonn,tabl
AUTHOR
Reinhard Zumkeller, Aug 16 2015
STATUS
approved