login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A265604 Triangle read by rows: The inverse Bell transform of the quartic factorial numbers (A007696). 7
1, 0, 1, 0, 1, 1, 0, -2, 3, 1, 0, 10, -5, 6, 1, 0, -80, 30, -5, 10, 1, 0, 880, -290, 45, 5, 15, 1, 0, -12320, 3780, -560, 35, 35, 21, 1, 0, 209440, -61460, 8820, -735, 0, 98, 28, 1, 0, -4188800, 1192800, -167300, 14700, -735, 0, 210, 36, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,8

LINKS

Table of n, a(n) for n=0..54.

Peter Luschny, The Bell transform

Richell O. Celeste, Roberto B. Corcino, Ken Joffaniel M. Gonzales. Two Approaches to Normal Order Coefficients. Journal of Integer Sequences, Vol. 20 (2017), Article 17.3.5.

EXAMPLE

[ 1]

[ 0,      1]

[ 0,      1,      1]

[ 0,     -2,      3,      1]

[ 0,     10,     -5,      6,      1]

[ 0,    -80,     30,     -5,     10,      1]

[ 0,    880,   -290,     45,      5,     15,      1]

PROG

(Sage) # uses[bell_transform from A264428]

def inverse_bell_matrix(generator, dim):

    G = [generator(k) for k in srange(dim)]

    row = lambda n: bell_transform(n, G)

    M = matrix(ZZ, [row(n)+[0]*(dim-n-1) for n in srange(dim)]).inverse()

    return matrix(ZZ, dim, lambda n, k: (-1)^(n-k)*M[n, k])

multifact_4_1 = lambda n: prod(4*k + 1 for k in (0..n-1))

print(inverse_bell_matrix(multifact_4_1, 8))

CROSSREFS

Cf. A007696, A264428, A264429.

Inverse Bell transforms of other multifactorials are: A048993, A049404, A049410, A075497, A075499, A075498, A119275, A122848, A265605.

Sequence in context: A121434 A296455 A137329 * A171996 A175669 A288839

Adjacent sequences:  A265601 A265602 A265603 * A265605 A265606 A265607

KEYWORD

sign,tabl

AUTHOR

Peter Luschny, Dec 30 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 16 22:03 EDT 2021. Contains 343955 sequences. (Running on oeis4.)