login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A171996
A(n,k,m) is the number of permutations of an n-set with k disjoint cycles of length less than or equal to m, called the (n,k)-th m-restrained Stirling numbers of the first kind, and denoted by mS_1(n,k). The sequence shows the case of m=3.
0
1, -1, 1, 2, -3, 1, 0, 11, -6, 1, 0, -20, 35, -10, 1, 0, 40, -135, 85, -15, 1, 0, 0, 490, -525, 175, -21, 1, 0, 0, -1120, 2905, -1540, 322, -28, 1, 0, 0, 2240, -12600, 11865, -3780, 546, -36, 1, 0, 0, 0, 47600, -76545, 38325, -8190, 870, -45, 1
OFFSET
1,4
COMMENTS
A(n,k,m) is also the (n,k)-th entry in the matrix inverting the matrix consisting of the m-restrained Stirling numbers of the second kind.
Also the Bell transform of the sequence "g(n) = [1,-1,2][n] if n < 3, otherwise 0" (adding 1,0,0,.. as column 0). For the definition of the Bell transform see A264428. - Peter Luschny, Jan 19 2016
FORMULA
A(n,k,m) = Sum {(-1)^(n-k)*n!} /{1^{k_1}*2^{k_2}*...*m^{k_m}*(k_1!)*(k_2!)*...*(k_m!)}, where k_1 + 2*k_2 + ... + m*k_m = n and k_1 + k_2 + ... + k_m = k.
Recurrence A(n,k,m) = Sum_{i=1..m} (-1)^(i-1)*[n-1]_{i-1}*A(n-i,k-1,m).
A(n,k,m) = A(n-1,k-1,m) - (n-1)*A(n-1,k,m) - (-1)^m(n-1)*(n-2)*...*(n-m)*A(n-m-1,k-1,m).
Generating function f(t) = (1 + t - t^2/2 + t^3/3 + ... + (-1)^(m-1) t^m/m)^x, for an indeterminate x ===> the n-th derivative of f(t) at t=0, f^(n)(0) = Sum_{k=1..n} A(n,k,m)[x]_k, where [x]_k is the k-th falling factorial
T(n,k) = (-1)^(n-k)*n!*Sum_{j=0..k} C(j,n-k-j)*C(k,j)*3^(-n+k+j)*2^(n-k-2*j)/k!. - Vladimir Kruchinin, Oct 02 2019
EXAMPLE
A(1,1,3)=1, A(1,2,3)=0, A(1,3,3)=0, A(1,4,3)=0, ...
A(2,1,3)=-1, A(2,2,3)=1, A(2,3,3)=0, A(2,4,3)=0, ...
A(3,1,3)=2, A(3,2,3)=-3, A(3,3,3)=1, A(3,4,3)=0, ...
A(4,1,3)=0, A(4,2,3)=11, A(4,3,3)=-6, A(4,4,3)=1, ...
PROG
(Sage) # uses[bell_matrix from A264428]
# Adds a column 1, 0, 0, 0, ... at the left side of the triangle.
bell_matrix(lambda n: [1, -1, 2][n] if n < 3 else 0, 12) # Peter Luschny, Jan 19 2016
(PARI) T(n, k) = (-1)^(n-k)*n!*sum(j=0, k, binomial(j, n-k-j)*binomial(k, j)*3^(-n+k+j)*2^(n-k-2*j)/k!); \\ Jinyuan Wang, Dec 21 2019
CROSSREFS
Cf. A111246, A144633, A171998 (matrix inverse).
Sequence in context: A296455 A137329 A265604 * A175669 A288839 A286583
KEYWORD
sign,tabl
AUTHOR
Ji Young Choi, Jan 21 2010
EXTENSIONS
More terms from Peter Luschny, Jan 19 2016
STATUS
approved