The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A286583 a(n) = A007814(A048673(n)). 6
 0, 1, 0, 0, 2, 3, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 2, 5, 2, 2, 0, 2, 0, 1, 0, 1, 4, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 3, 0, 3, 2, 0, 0, 0, 1, 4, 0, 1, 2, 1, 0, 1, 0, 0, 1, 1, 3, 1, 0, 2, 1, 2, 1, 0, 2, 0, 1, 3, 1, 0, 3, 3, 7, 1, 2, 0, 0, 0, 3, 0, 0, 1, 4, 0, 0, 1, 0, 0, 4, 0, 5, 0, 1, 0, 0, 2, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 6 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,5 LINKS Antti Karttunen, Table of n, a(n) for n = 1..10000 FORMULA a(n) = A007814(A048673(n)). PROG (PARI) A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ Using code of Michel Marcus A048673(n) = (A003961(n)+1)/2; A007814(n) = (valuation(n, 2)); A286583(n) = A007814(A048673(n)); (Scheme) (define (A286583 n) (A007814 (A048673 n))) (Python) from sympy import factorint, nextprime from operator import mul def a007814(n): return 1 + bin(n - 1)[2:].count("1") - bin(n)[2:].count("1") def a048673(n):     f = factorint(n)     return 1 if n==1 else (1 + reduce(mul, [nextprime(i)**f[i] for i in f]))/2 def a(n): return a007814(a048673(n)) # Indranil Ghosh, Jun 12 2017 CROSSREFS Cf. A007814, A048673, A286582, A286584, A286585. Cf. A246261 (positions of zeros), A246263 (of nonzeros). Sequence in context: A171996 A175669 A288839 * A321931 A321934 A004579 Adjacent sequences:  A286580 A286581 A286582 * A286584 A286585 A286586 KEYWORD nonn AUTHOR Antti Karttunen, May 31 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 5 16:49 EDT 2020. Contains 333245 sequences. (Running on oeis4.)