login
A321934
Tetrangle where T(n,H(u),H(v)) is the coefficient of p(v) in F(u), where u and v are integer partitions of n, H is Heinz number, p is power sum symmetric functions, and F is augmented forgotten symmetric functions.
1
1, -1, 0, 1, 1, 1, 0, 0, -1, -1, 0, 2, 3, 1, -1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, -2, -1, -2, -1, 0, 6, 3, 8, 6, 1, 1, 0, 0, 0, 0, 0, 0, -1, -1, 0, 0, 0, 0, 0, -1, 0, -1, 0, 0, 0, 0, 2, 1, 2, 1, 0, 0, 0, 2, 2, 1, 0, 1, 0, 0, -6, -6, -5, -3, -3, -1, 0
OFFSET
1,12
COMMENTS
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
The augmented forgotten symmetric functions are given by F(y) = c(y) * f(y) where f is forgotten symmetric functions and c(y) = Product_i (y)_i!, where (y)_i is the number of i's in y.
EXAMPLE
Tetrangle begins (zeros not shown):
(1): 1
.
(2): -1
(11): 1 1
.
(3): 1
(21): -1 -1
(111): 2 3 1
.
(4): -1
(22): 1 1
(31): 1 1
(211): -2 -1 -2 -1
(1111): 6 3 8 6 1
.
(5): 1
(41): -1 -1
(32): -1 -1
(221): 2 1 2 1
(311): 2 2 1 1
(2111): -6 -6 -5 -3 -3 -1
(11111): 24 30 20 15 20 10 1
For example, row 14 gives: F(32) = -p(5) - p(32).
CROSSREFS
Row sums are A178803. Up to sign, same as A321931. This is a regrouping of the triangle A321899.
Sequence in context: A288839 A286583 A321931 * A004579 A081371 A321935
KEYWORD
sign,tabf
AUTHOR
Gus Wiseman, Nov 23 2018
STATUS
approved