OFFSET
1,12
COMMENTS
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
The augmented forgotten symmetric functions are given by F(y) = c(y) * f(y) where f is forgotten symmetric functions and c(y) = Product_i (y)_i!, where (y)_i is the number of i's in y.
LINKS
EXAMPLE
Tetrangle begins (zeros not shown):
(1): 1
.
(2): -1
(11): 1 1
.
(3): 1
(21): -1 -1
(111): 2 3 1
.
(4): -1
(22): 1 1
(31): 1 1
(211): -2 -1 -2 -1
(1111): 6 3 8 6 1
.
(5): 1
(41): -1 -1
(32): -1 -1
(221): 2 1 2 1
(311): 2 2 1 1
(2111): -6 -6 -5 -3 -3 -1
(11111): 24 30 20 15 20 10 1
For example, row 14 gives: F(32) = -p(5) - p(32).
CROSSREFS
KEYWORD
sign,tabf
AUTHOR
Gus Wiseman, Nov 23 2018
STATUS
approved