login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A321932
Tetrangle where T(n,H(u),H(v)) is the coefficient of p(v) in e(u) * Product_i u_i!, where u and v are integer partitions of n, H is Heinz number, p is power sum symmetric functions, and e is elementary symmetric functions.
0
1, -1, 1, 0, 1, 2, -3, 1, 0, -1, 1, 0, 0, 1, -6, 3, 8, -6, 1, 0, 1, 0, -2, 1, 0, 0, 2, -3, 1, 0, 0, 0, -1, 1, 0, 0, 0, 0, 1, 24, -30, -20, 15, 20, -10, 1, 0, -6, 0, 3, 8, -6, 1, 0, 0, -2, 3, 2, -4, 1, 0, 0, 0, 1, 0, -2, 1, 0, 0, 0, 0, 2, -3, 1, 0, 0, 0, 0, 0
OFFSET
1,6
COMMENTS
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
EXAMPLE
Tetrangle begins (zeros not shown):
(1): 1
.
(2): -1 1
(11): 1
.
(3): 2 -3 1
(21): -1 1
(111): 1
.
(4): -6 3 8 -6 1
(22): 1 -2 1
(31): 2 -3 1
(211): -1 1
(1111): 1
.
(5): 24 30 20 15 20 10 1
(41): -6 3 8 -6 1
(32): -2 3 2 -4 1
(221): 1 -2 1
(311): 2 -3 1
(2111): -1 1
(11111): 1
For example, row 14 gives: 12e(32) = -2p(32) + 3p(221) + 2p(311) - 4p(2111) + p(11111).
CROSSREFS
Row sums are A134286. This is a regrouping of the triangle A321896.
Sequence in context: A124314 A059087 A353493 * A321933 A030373 A079343
KEYWORD
sign,tabf
AUTHOR
Gus Wiseman, Nov 23 2018
STATUS
approved