login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A321899
Irregular triangle read by rows where T(H(u),H(v)) is the coefficient of p(v) in F(u), where H is Heinz number, F is augmented forgotten symmetric functions, and p is power sum symmetric functions.
1
1, 1, -1, 0, 1, 1, 1, 0, 0, -1, -1, 0, -1, 0, 0, 0, 0, 2, 3, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, -2, -1, -2, -1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, 0, 0, 0, 0, 0, -1, 0, -1, 0, 0, 0, 0, 6, 3, 8, 6, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
OFFSET
1,18
COMMENTS
Row n has length A000041(A056239(n)).
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
The augmented forgotten symmetric functions are given by F(y) = c(y) * f(y) where f is forgotten symmetric functions and c(y) = Product_i (y)_i!, where (y)_i is the number of i's in y.
EXAMPLE
Triangle begins:
1
1
-1 0
1 1
1 0 0
-1 -1 0
-1 0 0 0 0
2 3 1
1 1 0 0 0
1 0 1 0 0
1 0 0 0 0 0 0
-2 -1 -2 -1 0
-1 0 0 0 0 0 0 0 0 0 0
-1 -1 0 0 0 0 0
-1 0 -1 0 0 0 0
6 3 8 6 1
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 2 1 0 0 0
For example, row 12 gives: F(211) = -2p(4) - p(22) - 2p(31) - p(211).
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];
Table[Sum[(-1)^(Total[primeMS[m]]-PrimeOmega[m])*Product[(-1)^(Length[t]-1)*(Length[t]-1)!, {t, s}], {s, Select[sps[Range[PrimeOmega[n]]]/.Table[i->If[n==1, {}, primeMS[n]][[i]], {i, PrimeOmega[n]}], Times@@Prime/@Total/@#==m&]}], {n, 18}, {m, Sort[Times@@Prime/@#&/@IntegerPartitions[Total[primeMS[n]]]]}]
CROSSREFS
Row sums are A130675, up to sign. Same as A321895, up to sign.
Sequence in context: A321900 A352195 A321895 * A027870 A357526 A070077
KEYWORD
sign,tabf
AUTHOR
Gus Wiseman, Nov 20 2018
STATUS
approved