OFFSET
1,18
COMMENTS
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
The augmented forgotten symmetric functions are given by F(y) = c(y) * f(y) where f is forgotten symmetric functions and c(y) = Product_i (y)_i!, where (y)_i is the number of i's in y.
LINKS
EXAMPLE
Triangle begins:
1
1
-1 0
1 1
1 0 0
-1 -1 0
-1 0 0 0 0
2 3 1
1 1 0 0 0
1 0 1 0 0
1 0 0 0 0 0 0
-2 -1 -2 -1 0
-1 0 0 0 0 0 0 0 0 0 0
-1 -1 0 0 0 0 0
-1 0 -1 0 0 0 0
6 3 8 6 1
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 2 1 0 0 0
For example, row 12 gives: F(211) = -2p(4) - p(22) - 2p(31) - p(211).
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];
Table[Sum[(-1)^(Total[primeMS[m]]-PrimeOmega[m])*Product[(-1)^(Length[t]-1)*(Length[t]-1)!, {t, s}], {s, Select[sps[Range[PrimeOmega[n]]]/.Table[i->If[n==1, {}, primeMS[n]][[i]], {i, PrimeOmega[n]}], Times@@Prime/@Total/@#==m&]}], {n, 18}, {m, Sort[Times@@Prime/@#&/@IntegerPartitions[Total[primeMS[n]]]]}]
CROSSREFS
KEYWORD
sign,tabf
AUTHOR
Gus Wiseman, Nov 20 2018
STATUS
approved