login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A321898
Sum of coefficients of power sums symmetric functions in h(y) * Product_i y_i! where h is homogeneous symmetric functions and y is the integer partition with Heinz number n.
2
1, 1, 2, 1, 6, 2, 24, 1, 4, 6, 120, 2, 720, 24, 12, 1, 5040, 4, 40320, 6, 48, 120, 362880, 2, 36, 720, 8, 24, 3628800, 12, 39916800, 1, 240, 5040, 144, 4, 479001600, 40320, 1440, 6, 6227020800, 48, 87178291200, 120, 24, 362880, 1307674368000, 2, 576, 36, 10080
OFFSET
1,3
COMMENTS
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
FORMULA
Totally multiplicative with a(p) = primepi(p)! = A000142(A000720(p)). - Amiram Eldar, Sep 10 2023
EXAMPLE
The sum of coefficients of 12h(32) = 2p(32) + 3p(221) + 2p(311) + 4p(2111) + p(11111) is a(15) = 12.
MATHEMATICA
f[p_, e_] := (PrimePi[p]!)^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Sep 10 2023 *)
KEYWORD
nonn,easy,mult
AUTHOR
Gus Wiseman, Nov 20 2018
STATUS
approved