login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A321895
Irregular triangle read by rows where T(H(u),H(v)) is the coefficient of p(v) in M(u), where H is Heinz number, M is augmented monomial symmetric functions, and p is power sum symmetric functions.
12
1, 1, 1, 0, -1, 1, 1, 0, 0, -1, 1, 0, 1, 0, 0, 0, 0, 2, -3, 1, -1, 1, 0, 0, 0, -1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, -1, -2, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, -1, 0, 1, 0, 0, 0, 0, -6, 3, 8, -6, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
OFFSET
1,18
COMMENTS
Row n has length A000041(A056239(n)).
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
The augmented monomial symmetric functions are given by M(y) = c(y) * m(y) where c(y) = Product_i (y)_i! where (y)_i is the number of i's in y and m is monomial symmetric functions.
EXAMPLE
Triangle begins:
1
1
1 0
-1 1
1 0 0
-1 1 0
1 0 0 0 0
2 -3 1
-1 1 0 0 0
-1 0 1 0 0
1 0 0 0 0 0 0
2 -1 -2 1 0
1 0 0 0 0 0 0 0 0 0 0
-1 1 0 0 0 0 0
-1 0 1 0 0 0 0
-6 3 8 -6 1
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 -1 -2 1 0 0 0
For example, row 12 gives: M(211) = 2p(4) - p(22) - 2p(31) + p(211).
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];
Table[Sum[Product[(-1)^(Length[t]-1)*(Length[t]-1)!, {t, s}], {s, Select[sps[Range[PrimeOmega[n]]]/.Table[i->If[n==1, {}, primeMS[n]][[i]], {i, PrimeOmega[n]}], Times@@Prime/@Total/@#==m&]}], {n, 18}, {m, Sort[Times@@Prime/@#&/@IntegerPartitions[Total[primeMS[n]]]]}]
KEYWORD
sign,tabf
AUTHOR
Gus Wiseman, Nov 20 2018
STATUS
approved