login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A309936
Irregular triangle read by rows: T(n,k) is the number of unlabeled loopless multigraphs with n edges covering k vertices, n >= 1, 1 <= k <= 2*n.
3
0, 1, 0, 1, 1, 1, 0, 1, 2, 3, 1, 1, 0, 1, 3, 7, 6, 4, 1, 1, 0, 1, 4, 13, 17, 17, 8, 4, 1, 1, 0, 1, 6, 25, 44, 56, 41, 24, 9, 4, 1, 1, 0, 1, 7, 40, 101, 164, 158, 117, 57, 26, 9, 4, 1, 1, 0, 1, 9, 65, 216, 450, 562, 503, 315, 162, 64, 27, 9, 4, 1, 1
OFFSET
1,9
COMMENTS
Covering k vertices means there are no vertices of degree zero.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..650 (rows 1..25)
FORMULA
T(n,k) = A192517(k,n) - A192517(k-1,n) for k > 1.
EXAMPLE
Triangle begins:
0, 1;
0, 1, 1, 1;
0, 1, 2, 3, 1, 1;
0, 1, 3, 7, 6, 4, 1, 1;
0, 1, 4, 13, 17, 17, 8, 4, 1, 1;
0, 1, 6, 25, 44, 56, 41, 24, 9, 4, 1, 1;
0, 1, 7, 40, 101, 164, 158, 117, 57, 26, 9, 4, 1, 1;
...
PROG
(PARI)
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
edges(v, t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i], v[j])); t(v[i]*v[j]/g)^g )) * prod(i=1, #v, my(c=v[i]); t(c)^((c-1)\2)*if(c%2, 1, t(c/2)))}
C(n, m)={my(s=O(x*x^m)); forpart(p=n, s+=permcount(p)/edges(p, i->1-x^i+O(x*x^m))); Col(s/n!)}
T(m) = {my(n=2*m, A=Mat(vector(n+1, n, C(n-1, m)))); A[2..m+1, 2..n+1]-A[2..m+1, 1..n]}
{ my(A=T(8)); for(n=1, matsize(A)[1], print(A[n, 1..2*n])) }
CROSSREFS
Row sums are A050535.
Columns k=3..4 are A253186, A328652.
Sequence in context: A004579 A081371 A321935 * A321900 A352195 A321895
KEYWORD
nonn,tabf
AUTHOR
Andrew Howroyd, Oct 23 2019
STATUS
approved