login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A309935
Primes p such that the base-10 concatenation (p+1)||p is prime.
4
3, 23, 41, 101, 107, 113, 179, 191, 197, 263, 269, 281, 293, 311, 353, 383, 389, 419, 443, 491, 521, 569, 659, 683, 701, 761, 773, 809, 821, 839, 881, 887, 911, 947, 1109, 1217, 1223, 1229, 1433, 1481, 1499, 1559, 1667, 1697, 1811, 1901, 1973, 2069, 2087, 2099, 2111, 2129
OFFSET
1,1
LINKS
EXAMPLE
a(3) = 41 is in the sequence because 41 and 4241 are primes.
MAPLE
select(t -> isprime(t) and isprime(10^(1+ilog10(t))*(t+1)+t), [$1..20000]);
MATHEMATICA
Select[Prime[Range[350]], PrimeQ[(#+1)10^IntegerLength[#]+#]&] (* Harvey P. Dale, May 07 2022 *)
PROG
(Magma) [p:p in PrimesUpTo(2200)| IsPrime(Seqint(Intseq(p) cat Intseq(p+1)))]; // Marius A. Burtea, Aug 23 2019
(PARI) isok(k) = isprime(k) && isprime(eval(Str(k+1, k))); \\ Jinyuan Wang, Aug 26 2019
CROSSREFS
Sequence in context: A106066 A281551 A167216 * A212396 A319976 A117738
KEYWORD
nonn,base
AUTHOR
Robert Israel, Aug 23 2019
STATUS
approved