The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A309938 Triangle read by rows: T(n,k) is the number of compositions of n with k parts and differences all equal to 1 or -1. 8
 1, 1, 0, 1, 2, 0, 1, 0, 1, 0, 1, 2, 1, 0, 0, 1, 0, 2, 2, 0, 0, 1, 2, 1, 0, 1, 0, 0, 1, 0, 1, 4, 1, 0, 0, 0, 1, 2, 2, 0, 3, 2, 0, 0, 0, 1, 0, 1, 4, 2, 0, 1, 0, 0, 0, 1, 2, 1, 0, 3, 6, 1, 0, 0, 0, 0, 1, 0, 2, 4, 3, 0, 4, 2, 0, 0, 0, 0, 1, 2, 1, 0, 3, 8, 3, 0, 1, 0, 0, 0, 0 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,5 COMMENTS Parts will alternate between being odd and even. For even k, a composition cannot be the same as its reversal and therefore for even k, T(n,k) is even. LINKS Alois P. Heinz, Rows n = 1..200, flattened EXAMPLE Triangle begins: 1; 1, 0; 1, 2, 0; 1, 0, 1, 0; 1, 2, 1, 0, 0; 1, 0, 2, 2, 0, 0; 1, 2, 1, 0, 1, 0, 0; 1, 0, 1, 4, 1, 0, 0, 0; 1, 2, 2, 0, 3, 2, 0, 0, 0; 1, 0, 1, 4, 2, 0, 1, 0, 0, 0; 1, 2, 1, 0, 3, 6, 1, 0, 0, 0, 0; 1, 0, 2, 4, 3, 0, 4, 2, 0, 0, 0, 0; 1, 2, 1, 0, 3, 8, 3, 0, 1, 0, 0, 0, 0; 1, 0, 1, 4, 3, 0, 6, 8, 1, 0, 0, 0, 0, 0; 1, 2, 2, 0, 4, 10, 5, 0, 5, 2, 0, 0, 0, 0, 0; ... For n = 6 there are a total of 5 compositions: k = 1: (6) k = 3: (123), (321) k = 4: (2121), (1212) MAPLE b:= proc(n, i) option remember; `if`(n<1 or i<1, 0, `if`(n=i, x, add(expand(x*b(n-i, i+j)), j=[-1, 1]))) end: T:= n-> (p-> seq(coeff(p, x, i), i=1..n))(add(b(n, j), j=1..n)): seq(T(n), n=1..14); # Alois P. Heinz, Jul 22 2023 MATHEMATICA b[n_, i_] := b[n, i] = If[n < 1 || i < 1, 0, If[n == i, x, Sum[Expand[x*b[n - i, i + j]], {j, {-1, 1}}]]]; T[n_] := CoefficientList[Sum[b[n, j], {j, 1, n}], x] // Rest // PadRight[#, n]&; Table[T[n], {n, 1, 13}] // Flatten (* Jean-François Alcover, Sep 06 2023, after Alois P. Heinz *) PROG (PARI) step(R, n)={matrix(n, n, i, j, if(i>j, if(j>1, R[i-j, j-1]) + if(j+1<=n, R[i-j, j+1])) )} T(n)={my(v=vector(n), R=matid(n), m=0); while(R, m++; v[m]+=vecsum(R[n, ]); R=step(R, n)); v} for(n=1, 15, print(T(n))) CROSSREFS Row sums are A173258. T(2n,n) gives A364529. Cf. A309931, A309937, A309939, A325557. Sequence in context: A116927 A137276 A287234 * A140581 A137277 A039975 Adjacent sequences: A309935 A309936 A309937 * A309939 A309940 A309941 KEYWORD nonn,tabl AUTHOR Andrew Howroyd, Aug 23 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 12 11:47 EDT 2024. Contains 373331 sequences. (Running on oeis4.)