login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A321937
Numerators of the Maclaurin coefficients of exp(1/x - 1/(exp(x)-1) - 1/2).
3
1, -1, 1, 67, -283, -5911, 269891, 114551, -9390523, -1021798901, 273468378049, 3918564638257, -872697935308349, -131115162268691, 1397912875942181, 2172284899403876321, -3926446823184958835813, -284746035618826337921, 286113629384558337084185927
OFFSET
0,4
COMMENTS
The Maclaurin coefficients arise in a theorem of Slater (1960) on asymptotic expansions of confluent hypergeometric functions, see Sec. 3.1 of the paper by Temme (2013), and Theorem 5 of the preprint by Brent et al. (2018).
REFERENCES
L. J. Slater, Confluent Hypergeometric Functions, Cambridge University Press, 1960.
LINKS
Richard P. Brent, M. L. Glasser, Anthony J. Guttmann, A Conjectured Integer Sequence Arising From the Exponential Integral, arXiv:1812.00316 [math.NT], 2018.
EXAMPLE
For n=0..3 the Maclaurin coefficients are 1, -1/12, 1/288, 67/61840.
MAPLE
A321937List := proc(len) local mu, ser;
mu := h -> sum(bernoulli(2*k)/(2*k)!*h^(2*k-1), k=1..infinity);
ser := series(exp(mu(-h)), h, len+2): seq(numer(coeff(ser, h, n)), n=0..len) end:
A321937List(18); # Peter Luschny, Dec 05 2018
MATHEMATICA
Exp[1/x - 1/(Exp[x]-1) - 1/2] + O[x]^20 // CoefficientList[#, x]& // Numerator (* Jean-François Alcover, Jan 21 2019 *)
PROG
(PARI) x='x+O('x^25); apply(numerator , Vec(exp(1/x - 1/(exp(x)-1) - 1/2))) \\ Joerg Arndt, Dec 05 2018
CROSSREFS
Denominators are A321938.
Sequence in context: A140731 A140855 A052164 * A270615 A142804 A033242
KEYWORD
sign,frac
AUTHOR
Richard P. Brent, Nov 22 2018
STATUS
approved