OFFSET
0,2
COMMENTS
The Maclaurin coefficients arise in a theorem of Slater (1960) on asymptotic expansions of confluent hypergeometric functions, see Sec. 3.1 of the paper by Temme (2013), and Theorem 5 of the preprint by Brent et al. (2018).
The sequence is related to A001164 but differs from the 7th term.
REFERENCES
L. J. Slater, Confluent Hypergeometric Functions, Cambridge University Press, 1960.
LINKS
Richard P. Brent, M. L. Glasser, Anthony J. Guttmann, A Conjectured Integer Sequence Arising From the Exponential Integral, arXiv:1812.00316 [math.NT], 2018.
N. M. Temme, Remarks on Slater's asymptotic expansions of Kummer functions for large values of the a-parameter, Adv. Dyn. Syst. Appl., 8 (2013), 365-377.
EXAMPLE
For n=0..3 the Maclaurin coefficients are 1, -1/12, 1/288, 67/61840.
MAPLE
A321938List := proc(len) local mu, ser;
mu := h -> sum(bernoulli(2*k)/(2*k)!*h^(2*k-1), k=1..infinity);
ser := series(exp(mu(h)), h, len+2): seq(denom(coeff(ser, h, n)), n=0..len) end:
A321938List(14); # Peter Luschny, Dec 05 2018
MATHEMATICA
Exp[1/x - 1/(Exp[x]-1) - 1/2] + O[x]^20 // CoefficientList[#, x]& // Denominator (* Jean-François Alcover, Jan 21 2019 *)
PROG
(PARI) x='x+O('x^25); apply(denominator, Vec(exp(1/x - 1/(exp(x)-1) - 1/2))) \\ Joerg Arndt, Dec 05 2018
CROSSREFS
KEYWORD
nonn,frac
AUTHOR
Richard P. Brent, Nov 22 2018
STATUS
approved