login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A286582
a(n) = A001222(A048673(n)).
6
0, 1, 1, 1, 2, 3, 2, 2, 1, 1, 1, 1, 2, 1, 3, 1, 2, 2, 3, 5, 3, 3, 2, 3, 2, 2, 3, 3, 4, 1, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 4, 1, 4, 3, 3, 2, 1, 2, 5, 2, 3, 3, 2, 1, 2, 1, 1, 2, 2, 4, 3, 2, 4, 3, 4, 2, 1, 3, 1, 3, 4, 2, 2, 4, 5, 7, 3, 3, 1, 2, 3, 4, 1, 1, 3, 5, 2, 1, 2, 1, 2, 5, 4, 6, 2, 3, 1, 2, 3, 2, 4, 3, 1, 1
OFFSET
1,5
LINKS
FORMULA
a(n) = A001222(A048673(n)).
PROG
(PARI)
A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ Using code of Michel Marcus
A048673(n) = (A003961(n)+1)/2;
A286582(n) = bigomega(A048673(n));
(Scheme) (define (A286582 n) (A001222 (A048673 n)))
(Python)
from sympy import factorint, nextprime, primefactors, prod
def a001222(n): return 0 if n==1 else a001222(n//primefactors(n)[-1]) + 1
def a048673(n):
f = factorint(n)
return 1 if n==1 else (1 + prod(nextprime(i)**f[i] for i in f))//2
def a(n): return a001222(a048673(n))
print([a(n) for n in range(1, 51)]) # Indranil Ghosh, Jun 12 2017
KEYWORD
nonn
AUTHOR
Antti Karttunen, May 31 2017
STATUS
approved