login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A274884
Triangle read by rows, coefficients of q-polynomials representing the oscillating orbitals over n sectors as A274888(n) - 2*A274886(n), a q-analog of A232500.
1
-1, -1, -1, 1, -1, 0, 0, 1, -1, 1, 0, 1, 1, -1, 0, 0, 1, 2, 3, 2, 2, 1, -1, 1, 0, 1, 1, 3, 1, 2, 1, 1, -1, 0, 0, 1, 2, 5, 6, 9, 9, 10, 9, 8, 5, 4, 2, 1, -1, 1, 0, 1, 1, 3, 3, 5, 4, 5, 5, 5, 3, 3, 2, 1, 1
OFFSET
0,18
COMMENTS
The polynomials are univariate polynomials over the integers with degree floor((n+1)/2)^2 + ((n+1) mod 2). Evaluated at q=1 the polynomials give A232500.
For the combinatorial interpretation see A232500 and the link 'orbitals' (see also the illustrations there).
EXAMPLE
The polynomials start:
[0] -1
[1] -1
[2] q - 1
[3] (q - 1) * (q^2 + q + 1)
[4] (q^2 + 1) * (q^2 + q - 1)
[5] (q^2 + 1) * (q^2 + q - 1) * (q^4 + q^3 + q^2 + q + 1)
[6] (q^2 - q + 1) * (q^3 + q^2 + q - 1) * (q^4 + q^3 + q^2 + q + 1)
The table starts:
[n] [k=0,1,2,...] [row sum]
[0] [-1] -1
[1] [-1] -1
[2] [-1, 1] 0
[3] [-1, 0, 0, 1] 0
[4] [-1, 1, 0, 1, 1] 2
[5] [-1, 0, 0, 1, 2, 3, 2, 2, 1] 10
[6] [-1, 1, 0, 1, 1, 3, 1, 2, 1, 1] 10
[7] [-1, 0, 0, 1, 2, 5, 6, 9, 9, 10, 9, 8, 5, 4, 2, 1] 70
[8] [-1, 1, 0, 1, 1, 3, 3, 5, 4, 5, 5, 5, 3, 3, 2, 1, 1] 42
MAPLE
QOscOrbitals := proc(n) local h, p, P, F, C, S;
P := x -> QDifferenceEquations:-QPochhammer(q, q, x);
F := x -> QDifferenceEquations:-QFactorial(x, q);
h := iquo(n, 2): p := `if`(n::even, 1-q, 1);
C := (p*P(n))/(P(h)*P(h+1)); S := F(n)/F(h)^2;
expand(simplify(expand(S-2*C))); seq(coeff(%, q, j), j=0..degree(%)) end:
seq(QOscOrbitals(n), n=0..8);
PROG
(Sage) # uses[q_ext_catalan_number]
# Function q_ext_catalan_number is in A274886.
from sage.combinat.q_analogues import q_multinomial
def q_osc_orbitals(n):
return q_multinomial([n//2, n%2, n//2]) - 2*q_ext_catalan_number(n)
for n in (0..9): print(q_osc_orbitals(n).list())
CROSSREFS
Cf. A232500 (row sums), A274886, A274888.
Sequence in context: A368128 A362956 A323326 * A076224 A286582 A114729
KEYWORD
sign,tabf
AUTHOR
Peter Luschny, Jul 20 2016
STATUS
approved