login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A274883
Triangle read by rows, T(n,k) = 2^k*binomial(n,k)*A057977(n-k) for n>=0 and 0<=k<=n.
0
1, 1, 2, 1, 4, 4, 3, 6, 12, 8, 2, 24, 24, 32, 16, 10, 20, 120, 80, 80, 32, 5, 120, 120, 480, 240, 192, 64, 35, 70, 840, 560, 1680, 672, 448, 128, 14, 560, 560, 4480, 2240, 5376, 1792, 1024, 256, 126, 252, 5040, 3360, 20160, 8064, 16128, 4608, 2304, 512
OFFSET
0,3
EXAMPLE
Triangle starts:
1;
1, 2;
1, 4, 4;
3, 6, 12, 8;
2, 24, 24, 32, 16;
10, 20, 120, 80, 80, 32;
5, 120, 120, 480, 240, 192, 64;
35, 70, 840, 560, 1680, 672, 448, 128;
14, 560, 560, 4480, 2240, 5376, 1792, 1024, 256;
MAPLE
T := (n, k) -> 2^k*binomial(n, k)*((n-k)!/floor((n-k)/2)!^2)/(floor((n-k)/2)+1);
seq(seq(T(n, k), k=0..n), n=0..9);
CROSSREFS
Cf. A000079 (T(n,n)), A057977 (T(n,0)), A077587 (row sum).
Cf. A189912. Row reversed A091894 is a subtriangle.
Sequence in context: A349571 A091335 A362865 * A140946 A008741 A369999
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Jul 14 2016
STATUS
approved