login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A077587
a(n) = C(n+1) + n*C(n) where C = A000108 (Catalan numbers).
4
1, 3, 9, 29, 98, 342, 1221, 4433, 16302, 60554, 226746, 854658, 3239044, 12332140, 47137005, 180780345, 695367510, 2681600130, 10364759790, 40142121030, 155748675420, 605274171060, 2355676013730, 9180275261274, 35819645937228
OFFSET
0,2
COMMENTS
Number of ascents of length 2 starting at an even level in all Dyck paths of semilength n+2. Example: a(1)=3 because all Dyck paths of semilength 3 are UDUDUD, UD(UU)DD, (UU)DDUD, (UU)DUDD and UUUDDD, where U=(1,1), D=(1,-1), having altogether 3 ascents of length 2 that start at an even level (shown between parentheses). - Emeric Deutsch, Nov 29 2005
a(n) is the number of parking functions of size n+1 avoiding the patterns 132, 231, and 321. - Lara Pudwell, Apr 10 2023
LINKS
G. C. Greubel and Vincenzo Librandi, Table of n, a(n) for n = 0..1000(terms 0..200 from Vincenzo Librandi)
Ayomikun Adeniran and Lara Pudwell, Pattern avoidance in parking functions, Enumer. Comb. Appl. 3:3 (2023), Article S2R17.
A. Asinowski and G. Rote, Point sets with many non-crossing matchings, arXiv:1502.04925 [cs.CG], 2015.
FORMULA
a(n) = binomial(2n+1, n+1) - binomial(2n, n+2).
a(n) = (3*(3*n+2)*a(n-1) - 2*(11*n-7)*a(n-2) + 4*(2*n-5)*a(n-3))/(n+2), n>2.
G.f.: A(x) = (1 - 3*x - (1-5*x+2*x^2)/sqrt(1-4*x) )/(2*x^2) satisfies 0 = (x^2+4*x-1) + (12*x^2-7*x+1)*A + (4*x^3-x^2)*A^2.
E.g.f.: A(x) = (1+x)B(x)' where B(x) = e.g.f. of A000108.
a(n) = Sum_{k=0..n} binomial(n,k)*A057977(k)*2^(n-k); here the A057977 are understood as the extended Catalan numbers (see also A063549). Related to Touchard's identity. - Peter Luschny, Jul 14 2016
a(n) ~ 4^n/sqrt(Pi*n). - Ilya Gutkovskiy, Jul 14 2016
Asymptotic starts a(n) ~ (4^n/sqrt(Pi*n))*(1 + (23/2^3)/n - (1199/2^7)/n^2 +(22685/2^10)/n^3 - (1562421/2^15)/n^4 + ... ). - Peter Luschny, Jul 14 2016
MAPLE
egf := x -> exp(2*x)*(1+1/x)*BesselI(1, 2*x);
seq(n!*coeff(series(egf(x), x, n+2), x, n), n=0..24); # Peter Luschny, Apr 14 2014
MATHEMATICA
Table[(CatalanNumber[n + 1] + n CatalanNumber[n]), {n, 0, 40}] (* Vincenzo Librandi, Apr 15 2014 *)
PROG
(PARI) a(n)=if(n<0, 0, (n^2+6*n+2)*(2*n)!/n!/(n+2)!)
(PARI) a(n)=if(n<0, 0, polcoeff((4+x+1/x-(x+1/x)^2)*(1+x)^(2*n), n)/2)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Michael Somos, Nov 09 2002
STATUS
approved