login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A238979
Number of ballot sequences of length n with exactly 4 fixed points.
2
0, 0, 0, 0, 1, 1, 3, 9, 29, 98, 350, 1302, 5062, 20380, 85108, 366444, 1627836, 7430360, 34855016, 167546408, 825185448, 4155400720, 21388745008, 112355110672, 602103194448, 3287743832352, 18285157048544, 103480813034336, 595671084096608, 3485006638408128
OFFSET
0,7
COMMENTS
The fixed points are in the first 4 positions.
Also the number of standard Young tableaux with n cells such that the first column contains 1, 2, 3, and 4, but not 5. An alternate definition uses the first row.
Conjecture: Generally, for fixed k is column k of A238802 asymptotic to sqrt(2)/(2*(k+1)*(k-1)!) * exp(sqrt(n)-n/2-1/4) * n^(n/2) * (1 + 7/(24*sqrt(n))), holds for all k<=10. - Vaclav Kotesovec, Mar 08 2014
LINKS
Joerg Arndt and Alois P. Heinz, Table of n, a(n) for n = 0..800
Wikipedia, Young tableau
FORMULA
See Maple program.
a(n) ~ sqrt(2)/60 * exp(sqrt(n)-n/2-1/4) * n^(n/2) * (1 + 7/(24*sqrt(n))). - Vaclav Kotesovec, Mar 07 2014
Recurrence (for n>=6): (n-5)*(n^4 - 15*n^3 + 65*n^2 - 45*n + 54)*a(n) = (n^5 - 20*n^4 + 125*n^3 - 145*n^2 - 651*n + 810)*a(n-1) + (n-6)*(n-4)*(n^4 - 11*n^3 + 26*n^2 + 44*n + 60)*a(n-2). - Vaclav Kotesovec, Mar 08 2014
EXAMPLE
a(4) = 1: [1,2,3,4].
a(5) = 1: [1,2,3,4,1].
a(6) = 3: [1,2,3,4,1,1], [1,2,3,4,1,2], [1,2,3,4,1,5].
a(7) = 9: [1,2,3,4,1,1,1], [1,2,3,4,1,1,2], [1,2,3,4,1,1,5], [1,2,3,4,1,2,1], [1,2,3,4,1,2,3], [1,2,3,4,1,2,5], [1,2,3,4,1,5,1], [1,2,3,4,1,5,2], [1,2,3,4,1,5,6].
MAPLE
b:= proc(n) option remember; `if`(n<3, [1$2, 3][n+1],
((11-n)*b(n-1) +(n^3+4*n^2-15)*b(n-2)
+(n-1)*(n-3)*(n+7)*b(n-3))/((n-1)*(n+1)))
end:
a:= n-> `if`(n<4, 0, b(n-4)):
seq(a(n), n=0..40);
MATHEMATICA
b[n_, l_List] := b[n, l] = If[n <= 0, 1, b[n - 1, Append[l, 1]] + Sum[If[i == 1 || l[[i - 1]] > l[[i]], b[n - 1, ReplacePart[l, i -> l[[i]] + 1]], 0], {i, 1, Length[l]}]]; a[n_] := If[n == 4, 1, b[n - 5, {2, 1, 1, 1}]]; a[n_ /; n < 4] = 0; Table[Print["a(", n, ") = ", an = a[n]]; an, {n, 0, 40}] (* Jean-François Alcover, Feb 06 2015, after Maple *)
CROSSREFS
Column k=4 of A238802.
Sequence in context: A346158 A077587 A001893 * A151030 A066331 A099780
KEYWORD
nonn,easy
AUTHOR
Joerg Arndt and Alois P. Heinz, Mar 07 2014
STATUS
approved