login
A238978
Number of ballot sequences of length n with exactly 3 fixed points.
2
0, 0, 0, 1, 1, 3, 9, 28, 93, 321, 1168, 4404, 17328, 70408, 296436, 1284768, 5740804, 26332788, 124066608, 598625296, 2958281328, 14941136784, 77111251408, 406028059968, 2180584156176, 11930067296848, 66468429865344, 376770132276288, 2172036623279488
OFFSET
0,6
COMMENTS
The fixed points are in the first 3 positions.
Also the number of standard Young tableaux with n cells such that the first column contains 1, 2, and 3, but not 4. An alternate definition uses the first row.
LINKS
Joerg Arndt and Alois P. Heinz, Table of n, a(n) for n = 0..800
Wikipedia, Young tableau
FORMULA
See Maple program.
a(n) ~ sqrt(2)/16 * exp(sqrt(n)-n/2-1/4) * n^(n/2) * (1 + 7/(24*sqrt(n))). - Vaclav Kotesovec, Mar 07 2014
Recurrence (for n>=5): (n-4)*(n^3 - 10*n^2 + 27*n - 26)*a(n) = (n^4 - 14*n^3 + 67*n^2 - 150*n + 152)*a(n-1) + (n-5)*(n-3)*(n^3 - 7*n^2 + 10*n - 8)*a(n-2). - Vaclav Kotesovec, Mar 08 2014
EXAMPLE
a(3) = 1: [1,2,3].
a(4) = 1: [1,2,3,1].
a(5) = 3: [1,2,3,1,1], [1,2,3,1,2], [1,2,3,1,4].
a(6) = 9: [1,2,3,1,1,1], [1,2,3,1,1,2], [1,2,3,1,1,4], [1,2,3,1,2,1], [1,2,3,1,2,3], [1,2,3,1,2,4], [1,2,3,1,4,1], [1,2,3,1,4,2], [1,2,3,1,4,5].
MAPLE
a:= proc(n) option remember; `if`(n<4, n*(n-1)*(n-2)/6,
((4*n^3-54*n^2+216*n-254) *a(n-1)
+(n-5)*(3*n^3-31*n^2+84*n-30) *a(n-2)
-(n-5)*(n-6)*(n^2-3*n-8) *a(n-3)) /
((n-3)*(3*n^2-33*n+86)))
end:
seq(a(n), n=0..40);
MATHEMATICA
b[n_, l_List] := b[n, l] = If[n <= 0, 1, b[n - 1, Append[l, 1]] + Sum[If[i == 1 || l[[i - 1]] > l[[i]], b[n - 1, ReplacePart[l, i -> l[[i]] + 1]], 0], {i, 1, Length[l]}]]; a[n_] := If[n == 3, 1, b[n - 4, {2, 1, 1}]]; a[n_ /; n < 3] = 0; Table[Print["a(", n, ") = ", an = a[n]]; an, {n, 0, 40}] (* Jean-François Alcover, Feb 06 2015, after Maple *)
CROSSREFS
Column k=3 of A238802.
Sequence in context: A131203 A191637 A345241 * A081914 A361763 A120985
KEYWORD
nonn,easy
AUTHOR
Joerg Arndt and Alois P. Heinz, Mar 07 2014
STATUS
approved