The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A238978 Number of ballot sequences of length n with exactly 3 fixed points. 2
 0, 0, 0, 1, 1, 3, 9, 28, 93, 321, 1168, 4404, 17328, 70408, 296436, 1284768, 5740804, 26332788, 124066608, 598625296, 2958281328, 14941136784, 77111251408, 406028059968, 2180584156176, 11930067296848, 66468429865344, 376770132276288, 2172036623279488 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,6 COMMENTS The fixed points are in the first 3 positions. Also the number of standard Young tableaux with n cells such that the first column contains 1, 2, and 3, but not 4. An alternate definition uses the first row. LINKS Joerg Arndt and Alois P. Heinz, Table of n, a(n) for n = 0..800 Wikipedia, Young tableau FORMULA See Maple program. a(n) ~ sqrt(2)/16 * exp(sqrt(n)-n/2-1/4) * n^(n/2) * (1 + 7/(24*sqrt(n))). - Vaclav Kotesovec, Mar 07 2014 Recurrence (for n>=5): (n-4)*(n^3 - 10*n^2 + 27*n - 26)*a(n) = (n^4 - 14*n^3 + 67*n^2 - 150*n + 152)*a(n-1) + (n-5)*(n-3)*(n^3 - 7*n^2 + 10*n - 8)*a(n-2). - Vaclav Kotesovec, Mar 08 2014 EXAMPLE a(3) = 1: [1,2,3]. a(4) = 1: [1,2,3,1]. a(5) = 3: [1,2,3,1,1], [1,2,3,1,2], [1,2,3,1,4]. a(6) = 9: [1,2,3,1,1,1], [1,2,3,1,1,2], [1,2,3,1,1,4], [1,2,3,1,2,1], [1,2,3,1,2,3], [1,2,3,1,2,4], [1,2,3,1,4,1], [1,2,3,1,4,2], [1,2,3,1,4,5]. MAPLE a:= proc(n) option remember; `if`(n<4, n*(n-1)*(n-2)/6,       ((4*n^3-54*n^2+216*n-254) *a(n-1)        +(n-5)*(3*n^3-31*n^2+84*n-30) *a(n-2)        -(n-5)*(n-6)*(n^2-3*n-8) *a(n-3)) /       ((n-3)*(3*n^2-33*n+86)))     end: seq(a(n), n=0..40); MATHEMATICA b[n_, l_List] := b[n, l] = If[n <= 0, 1, b[n - 1, Append[l, 1]] + Sum[If[i == 1 || l[[i - 1]] > l[[i]], b[n - 1, ReplacePart[l, i -> l[[i]] + 1]], 0], {i, 1, Length[l]}]]; a[n_] := If[n == 3, 1, b[n - 4, {2, 1, 1}]]; a[n_ /; n < 3] = 0; Table[Print["a(", n, ") = ", an = a[n]]; an, {n, 0, 40}] (* Jean-François Alcover, Feb 06 2015, after Maple *) CROSSREFS Column k=3 of A238802. Sequence in context: A228449 A131203 A191637 * A081914 A120985 A014323 Adjacent sequences:  A238975 A238976 A238977 * A238979 A238980 A238981 KEYWORD nonn,easy AUTHOR Joerg Arndt and Alois P. Heinz, Mar 07 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 25 01:49 EST 2020. Contains 331229 sequences. (Running on oeis4.)