login
A131203
Number of cycles of length n under the mapping x -> x^2-2 modulo Fermat prime 2^(2^m)+1, where m is any fixed integer such that n divides 2^m-1.
1
1, 1, 3, 9, 28, 93, 315, 1091, 3855, 13797, 49929, 182361, 671088, 2485504, 9256395, 34636833, 130150493, 490853403, 1857283155, 7048151355, 26817356775, 102280151421, 390937467284, 1497207322929, 5744387279808, 22076468760335
OFFSET
0,3
COMMENTS
Halved bisection of A001037.
Bisection of A000048. Number of 2m bead balanced binary necklaces of fundamental period 4n+2 that are equivalent to their complements, where m is any multiple of 2n+1. - Aaron Meyerowitz, Jun 01 2024
FORMULA
a(n) = A001037(2n+1)/2.
CROSSREFS
KEYWORD
nonn
AUTHOR
Max Alekseyev, Sep 27 2007
STATUS
approved