login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows, T(n,k) = 2^k*binomial(n,k)*A057977(n-k) for n>=0 and 0<=k<=n.
0

%I #12 Jul 14 2016 10:40:03

%S 1,1,2,1,4,4,3,6,12,8,2,24,24,32,16,10,20,120,80,80,32,5,120,120,480,

%T 240,192,64,35,70,840,560,1680,672,448,128,14,560,560,4480,2240,5376,

%U 1792,1024,256,126,252,5040,3360,20160,8064,16128,4608,2304,512

%N Triangle read by rows, T(n,k) = 2^k*binomial(n,k)*A057977(n-k) for n>=0 and 0<=k<=n.

%e Triangle starts:

%e 1;

%e 1, 2;

%e 1, 4, 4;

%e 3, 6, 12, 8;

%e 2, 24, 24, 32, 16;

%e 10, 20, 120, 80, 80, 32;

%e 5, 120, 120, 480, 240, 192, 64;

%e 35, 70, 840, 560, 1680, 672, 448, 128;

%e 14, 560, 560, 4480, 2240, 5376, 1792, 1024, 256;

%p T := (n,k) -> 2^k*binomial(n,k)*((n-k)!/floor((n-k)/2)!^2)/(floor((n-k)/2)+1);

%p seq(seq(T(n,k), k=0..n), n=0..9);

%Y Cf. A000079 (T(n,n)), A057977 (T(n,0)), A077587 (row sum).

%Y Cf. A189912. Row reversed A091894 is a subtriangle.

%K nonn,tabl

%O 0,3

%A _Peter Luschny_, Jul 14 2016