login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A091304
a(n) = Omega(2n-1) (number of prime factors of the n-th odd number, counted with multiplicity).
7
0, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 2, 3, 1, 1, 2, 2, 1, 2, 1, 1, 3, 1, 2, 2, 1, 2, 2, 1, 1, 3, 2, 1, 2, 1, 1, 3, 2, 1, 4, 1, 2, 2, 1, 2, 2, 2, 1, 3, 1, 1, 3, 1, 1, 2, 1, 2, 3, 2, 2, 2, 3, 1, 2, 1, 2, 4, 1, 1, 2, 2, 2, 3, 1, 1, 3, 2, 1, 2, 2, 1, 3, 1, 2, 3, 1, 3, 2, 1, 1, 2, 2, 2, 4, 1, 1, 3, 1, 1, 2, 2, 2, 3, 2
OFFSET
1,5
COMMENTS
Omega(n) of the odd integers follows a pattern similar to A001222, with 4 maxima instead of 2 - i.e. between 2^n and (2^(n+1) - 1) there are two numbers with exactly n factors (2^n and 2^(n-1) * 3) while the odd integers have 4 maxima (3^n, 3^(n-1) * 5, 3^(n-1) * 7, 5^2*3^(n-2)) between 3^n and 3^(n+1) - 1.
LINKS
FORMULA
a(n) = Omega(2n-1). [Odd bisection of A001222.]
From Antti Karttunen, May 31 2017: (Start)
For n >= 1, a(n) = A000120(A244153(n)).
For n >= 2, a(n) = 1+A285716(n).
(End)
EXAMPLE
Omega(1) = 0, Omega(9) = 2 (3 * 3 = 9), Omega (243) = 5 (3 * 3 * 3 * 3 * 3 = 243), Omega(51) = 2 (3 * 17 = 51).
For n = 92, A001222(2*92 - 1) = A001222(183) = 2 as 183 = 3*61, thus a(92) = 2. - Antti Karttunen, May 31 2017
MATHEMATICA
a[n_] := PrimeOmega[2*n - 1]; Array[a, 100] (* Amiram Eldar, Jul 23 2023 *)
PROG
(PARI) a(n) = bigomega(2*n-1) \\ Michel Marcus, Jul 26 2013, edited to reflect the changed starting offset by Antti Karttunen, May 31 2017
CROSSREFS
One more than A285716 (after the initial term).
Cf. A006254 (positions of ones).
Sequence in context: A091853 A193773 A369377 * A340101 A049847 A255274
KEYWORD
easy,nonn
AUTHOR
Andrew S. Plewe, Feb 20 2004
EXTENSIONS
Starting offset changed to 1 and the definition modified respectively. Also values of the initial term and of term a(92) (= 2, previously a(91) = 1) corrected by Antti Karttunen, May 31 2017
STATUS
approved