login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A091306
Sum of squares of unitary, squarefree divisors of n, including 1.
1
1, 5, 10, 1, 26, 50, 50, 1, 1, 130, 122, 10, 170, 250, 260, 1, 290, 5, 362, 26, 500, 610, 530, 10, 1, 850, 1, 50, 842, 1300, 962, 1, 1220, 1450, 1300, 1, 1370, 1810, 1700, 26, 1682, 2500, 1850, 122, 26, 2650, 2210, 10, 1, 5, 2900, 170, 2810, 5, 3172, 50, 3620
OFFSET
1,2
COMMENTS
If b(n,k) = sum of k-th powers of unitary, squarefree divisors of n, including 1, then b(n,k) is multiplicative with b(p,k)=p^k+1 and b(p^e,k)=1 for e>1.
Dirichlet g.f.: zeta(s)*product_{primes p} (1+p^(2-s)-p^(2-2s)). Dirichlet convolution of A000012 with the multiplicative sequence 1, 4, 9, -4, 25, 36, 49, 0, -9, 100, 121, -36, 169, 196,... - R. J. Mathar, Aug 28 2011
LINKS
FORMULA
Multiplicative with a(p)=p^2+1 and a(p^e)=1 for e>1.
From Vaclav Kotesovec, Nov 20 2021: (Start)
Dirichlet g.f.: zeta(s) * zeta(s-2) * Product_{primes p} (1 + p^(4 - 3*s) - p^(2 - 2*s) - p^(4 - 2*s)).
Sum_{k=1..n} a(k) ~ c * zeta(3) * n^3 / 3, where c = Product_{primes p} (1 - 1/p^2 - 1/p^4 + 1/p^5) = 0.576152735385667059520611078264117275406247116802896188...
(End)
MATHEMATICA
f[p_, e_] := If[e == 1, p^2 + 1, 1]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Aug 30 2019*)
CROSSREFS
Sequence in context: A330599 A099731 A307716 * A374538 A073048 A102258
KEYWORD
mult,easy,nonn
AUTHOR
Vladeta Jovovic, Feb 23 2004
STATUS
approved