login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A099731
This table shows the coefficients of sum formulas of n-th Fibonacci numbers (A000045). The k-th row (k>=1) contains T(i,k) for i=1 to k, where k=[2*n+1+(-1)^(n-1)]/4 and T(i,k) satisfies F(n)= Sum_{i=1..k} T(i,k) * n^(k-i)/(k-1)!.
14
1, 1, -1, 1, -5, 10, 1, -12, 59, -90, 1, -22, 203, -830, 1320, 1, -35, 525, -3985, 15374, -23640, 1, -51, 1135, -13665, 93544, -342324, 523440, 1, -70, 2170, -37870, 399889, -2542540, 8997540, -13633200, 1, -92, 3794, -90440, 1356929, -13076588, 78896236, -271996080, 409852800, 1, -117, 6198, -193410
OFFSET
1,5
EXAMPLE
F(13)=233; substituting n=13 in the formula of the k-th row we obtain k=7 and the coefficients
T(i,7) will be the following: 1,-51,1135,-13665,93544,-342324,523440,
=> F(13) = [13^6-51*13^5+1135*13^4-13665*13^3+93544*13^2-342324*13+523440]/6! = 233.
CROSSREFS
Sequence in context: A370131 A258150 A330599 * A307716 A091306 A374538
KEYWORD
sign,tabl
AUTHOR
STATUS
approved