login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A307716
Denominator of the barycenter of first n primes defined as a(n) = denominator(Sum_{i=1..n} (i*prime(i)) / Sum_{i=1..n} prime(i)).
2
1, 5, 10, 1, 14, 41, 58, 11, 50, 129, 160, 197, 119, 281, 328, 127, 110, 501, 568, 213, 89, 791, 874, 963, 53, 27, 1264, 457, 370, 1593, 1720, 1851, 71, 2127, 2276, 809, 1292, 2747, 2914, 3087, 1633, 1149, 34, 3831, 1007, 4227, 4438, 4661
OFFSET
1,2
COMMENTS
It appears that lim_{n->infinity} (1/n)*(A014285(n)/A007504(n)) = k, where k is a constant around 2/3.
a(n) = A007504(n) if and only if n is in A307414. - Robert Israel, Jul 08 2019
LINKS
FORMULA
a(n) = denominator(Sum_{i=1..n} (i*prime(i)) / Sum_{i=1..n} prime(i)).
a(n) = denominator(A014285(n)/A007504(n)).
MAPLE
S1:= 0:S2:= 0:
for n from 1 to 100 do
p:= ithprime(n);
S1:= S1 + p;
S2:= S2 + n*p;
A[n]:= denom(S2/S1)
od:
seq(A[i], i=1..100); # Robert Israel, Jul 08 2019
MATHEMATICA
a[n_]:=Sum[i*Prime[i], {i, 1, n}]/Sum[Prime[i], {i, 1, n}];
Table[a[n]//Denominator, {n, 1, 48}]
PROG
(PARI) a(n) = my(vp=primes(n)); denominator(sum(i=1, n, i*vp[i])/sum(i=1, n, vp[i])) \\ Michel Marcus, Apr 25 2019
CROSSREFS
Cf. A306834 (numerators), A272206, A007504, A014285, A307414.
Sequence in context: A258150 A330599 A099731 * A091306 A374538 A073048
KEYWORD
nonn,frac,look
AUTHOR
Andres Cicuttin, Apr 25 2019
STATUS
approved