login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A307716 Denominator of the barycenter of first n primes defined as a(n) = denominator(Sum_{i=1..n} (i*prime(i)) / Sum_{i=1..n} prime(i)). 2
1, 5, 10, 1, 14, 41, 58, 11, 50, 129, 160, 197, 119, 281, 328, 127, 110, 501, 568, 213, 89, 791, 874, 963, 53, 27, 1264, 457, 370, 1593, 1720, 1851, 71, 2127, 2276, 809, 1292, 2747, 2914, 3087, 1633, 1149, 34, 3831, 1007, 4227, 4438, 4661 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

It appears that lim_{n->infinity} (1/n)*(A014285(n)/A007504(n)) = k, where k is a constant around 2/3.

a(n) = A007504(n) if and only if n is in A307414. - Robert Israel, Jul 08 2019

LINKS

Robert Israel, Table of n, a(n) for n = 1..10000

FORMULA

a(n) = denominator(Sum_{i=1..n} (i*prime(i)) / Sum_{i=1..n} prime(i)).

a(n) = denominator(A014285(n)/A007504(n)).

MAPLE

S1:= 0:S2:= 0:

for n from 1 to 100 do

  p:= ithprime(n);

  S1:= S1 + p;

  S2:= S2 + n*p;

  A[n]:= denom(S2/S1)

od:

seq(A[i], i=1..100); # Robert Israel, Jul 08 2019

MATHEMATICA

a[n_]:=Sum[i*Prime[i], {i, 1, n}]/Sum[Prime[i], {i, 1, n}];

Table[a[n]//Denominator, {n, 1, 48}]

PROG

(PARI) a(n) = my(vp=primes(n)); denominator(sum(i=1, n, i*vp[i])/sum(i=1, n, vp[i])) \\ Michel Marcus, Apr 25 2019

CROSSREFS

Cf. A306834 (numerators), A272206, A007504, A014285, A307414.

Sequence in context: A258150 A330599 A099731 * A091306 A073048 A102258

Adjacent sequences:  A307713 A307714 A307715 * A307717 A307718 A307719

KEYWORD

nonn,frac,look

AUTHOR

Andres Cicuttin, Apr 25 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 28 16:40 EDT 2020. Contains 337393 sequences. (Running on oeis4.)