The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A307716 Denominator of the barycenter of first n primes defined as a(n) = denominator(Sum_{i=1..n} (i*prime(i)) / Sum_{i=1..n} prime(i)). 2
 1, 5, 10, 1, 14, 41, 58, 11, 50, 129, 160, 197, 119, 281, 328, 127, 110, 501, 568, 213, 89, 791, 874, 963, 53, 27, 1264, 457, 370, 1593, 1720, 1851, 71, 2127, 2276, 809, 1292, 2747, 2914, 3087, 1633, 1149, 34, 3831, 1007, 4227, 4438, 4661 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS It appears that lim_{n->infinity} (1/n)*(A014285(n)/A007504(n)) = k, where k is a constant around 2/3. a(n) = A007504(n) if and only if n is in A307414. - Robert Israel, Jul 08 2019 LINKS Robert Israel, Table of n, a(n) for n = 1..10000 FORMULA a(n) = denominator(Sum_{i=1..n} (i*prime(i)) / Sum_{i=1..n} prime(i)). a(n) = denominator(A014285(n)/A007504(n)). MAPLE S1:= 0:S2:= 0: for n from 1 to 100 do   p:= ithprime(n);   S1:= S1 + p;   S2:= S2 + n*p;   A[n]:= denom(S2/S1) od: seq(A[i], i=1..100); # Robert Israel, Jul 08 2019 MATHEMATICA a[n_]:=Sum[i*Prime[i], {i, 1, n}]/Sum[Prime[i], {i, 1, n}]; Table[a[n]//Denominator, {n, 1, 48}] PROG (PARI) a(n) = my(vp=primes(n)); denominator(sum(i=1, n, i*vp[i])/sum(i=1, n, vp[i])) \\ Michel Marcus, Apr 25 2019 CROSSREFS Cf. A306834 (numerators), A272206, A007504, A014285, A307414. Sequence in context: A258150 A330599 A099731 * A091306 A073048 A102258 Adjacent sequences:  A307713 A307714 A307715 * A307717 A307718 A307719 KEYWORD nonn,frac,look AUTHOR Andres Cicuttin, Apr 25 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 28 16:40 EDT 2020. Contains 337393 sequences. (Running on oeis4.)