login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A306834
Numerator of the barycenter of first n primes defined as a(n) = numerator(Sum_{i=1..n} (i*prime(i)) / Sum_{i=1..n} prime(i)).
4
1, 8, 23, 3, 53, 184, 303, 65, 331, 952, 1293, 1737, 1135, 2872, 3577, 1475, 1357, 6526, 7799, 3073, 1344, 12490, 14399, 16535, 948, 502, 24367, 9121, 7631, 33914, 37851, 42043, 1663, 51290, 56505, 20647, 33875, 73944, 80457, 87377, 47358, 34106, 1033, 119023, 31972, 137042, 146959, 157663
OFFSET
1,2
COMMENTS
It appears that lim_{n->infinity} (1/n)*(A014285(n)/A007504(n)) = k, where k is a constant around 2/3.
LINKS
FORMULA
a(n) = numerator(Sum_{i=1..n} (i*prime(i)) / Sum_{i=1..n} prime(i)).
a(n) = numerator(A014285(n)/A007504(n)).
MAPLE
N:= 100: # for a(1)..a(N)
Primes:= map(ithprime, [$1..N]):
S1:= ListTools:-PartialSums(Primes):
S2:= ListTools:-PartialSums(zip(`*`, Primes, [$1..N])):
map(numer, zip(`/`, S2, S1)); # Robert Israel, Apr 07 2019
MATHEMATICA
a[n_]:=Sum[i*Prime[i], {i, 1, n}]/Sum[Prime[i], {i, 1, n}];
Table[a[n]//Numerator, {n, 1, 40}]
PROG
(PARI) a(n) = numerator(sum(i=1, n, i*prime(i))/sum(i=1, n, prime(i))); \\ Michel Marcus, Mar 15 2019
CROSSREFS
KEYWORD
nonn,frac,look
AUTHOR
Andres Cicuttin, Mar 12 2019
STATUS
approved