The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A307715 Decimal expansion of Sum_{t>0} log((t + 1)/t)^2. 0
 9, 7, 7, 1, 8, 9, 1, 8, 3, 2, 6, 8, 9, 3, 6, 5, 5, 4, 4, 5, 7, 8, 8, 5, 7, 4, 9, 4, 7, 6, 4, 3, 4, 7, 4, 8, 0, 7, 7, 3, 9, 2, 5, 0, 6, 4, 7, 4, 7, 2, 3, 9, 0, 1, 7, 7, 0, 2, 0, 9, 8, 9, 7, 5, 5, 3, 1, 8, 4, 4, 5, 2, 9, 3, 9, 2, 3, 9, 3, 3, 5, 6, 2, 9, 0, 1, 2, 3, 2, 1, 0, 7, 9, 7, 4, 3, 2, 0, 3, 3, 5, 9, 2, 3, 2 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS This constant appears in the asymptotic formula of the number of minimal covering systems with exactly n elements (see Theorem 1.1 in Balister, Bollobás, Morris, Sahasrabudhe and Tiba). LINKS P. Balister, B. Bollobás, R. Morris, J. Sahasrabudhe and M. Tiba, The structure and number of Erdős covering systems, arXiv:1904.04806 [math.CO], 2019. P. Erdõs, Egy kongruenciarendszerekrol szóló problémáról, (On a problem concerning congruence-systems, in Hungarian), Mat. Lapok, 4 (1952), 122-128. EXAMPLE 0.9771891832689365544578857494764347480773925064747239017702... MATHEMATICA First[RealDigits[NSum[(Log[(t + 1)/t])^2, {t, 1, Infinity}, NSumTerms -> 100, Method -> {"NIntegrate", "MaxRecursion" -> 10}, WorkingPrecision -> 100]]] PROG (PARI) sumpos(t=1, log((t + 1)/t)^2) \\ Michel Marcus, Apr 26 2019 CROSSREFS Cf. A080340, A094076, A275489, A294593, A296195. Sequence in context: A281197 A199503 A242714 * A269547 A333345 A183699 Adjacent sequences:  A307712 A307713 A307714 * A307716 A307717 A307718 KEYWORD nonn,cons AUTHOR Stefano Spezia, Apr 24 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 23 07:47 EDT 2020. Contains 337295 sequences. (Running on oeis4.)