The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A242714 Decimal expansion of C_6, a constant related to sharp inequalities for the product of 6 polynomials, which was introduced by David Boyd. 3
 1, 9, 7, 7, 1, 2, 6, 8, 3, 0, 8, 0, 3, 9, 3, 4, 3, 8, 6, 6, 9, 8, 3, 6, 7, 1, 7, 5, 2, 5, 3, 9, 7, 5, 6, 0, 2, 1, 3, 6, 6, 0, 4, 9, 7, 2, 7, 9, 6, 5, 1, 1, 8, 1, 0, 7, 2, 4, 4, 4, 5, 7, 8, 5, 7, 4, 3, 9, 7, 0, 0, 8, 9, 6, 8, 0, 9, 9, 7, 8, 2, 2, 9, 8, 9, 9, 1, 9, 0, 0, 2, 7, 5, 0, 5, 0, 2, 5, 0, 7 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 REFERENCES S. R. Finch, Mathematical Constants, Cambridge, 2003, Section 3.10 p. 233. LINKS David W. Boyd, Sharp inequalities for the product of polynomials Eric Weisstein's MathWorld, Clausen's Integral FORMULA exp(6/Pi*Clausen2(Pi - Pi/6)), where Clausen2 is Clausen's Integral. EXAMPLE 1.9771268308039343866983671752539756021366... MATHEMATICA Clausen2[x_] := Im[PolyLog[2, Exp[x*I]]]; c[m_] := Exp[m/Pi*Clausen2[Pi - Pi/m]]; RealDigits[c[6], 10, 100] // First PROG (PARI) exp(6*imag(polylog(2, exp(5*I*Pi/6)))/Pi) \\ Charles R Greathouse IV, Jul 15 2014 CROSSREFS Cf. A130834 (C_2), A242711 (C_3), A242712 (C_4), A242713 (C_5). Sequence in context: A247600 A281197 A199503 * A307715 A269547 A333345 Adjacent sequences:  A242711 A242712 A242713 * A242715 A242716 A242717 KEYWORD nonn,cons AUTHOR Jean-François Alcover, May 21 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 26 11:29 EDT 2020. Contains 337367 sequences. (Running on oeis4.)