Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Nov 20 2021 07:16:33
%S 1,5,10,1,26,50,50,1,1,130,122,10,170,250,260,1,290,5,362,26,500,610,
%T 530,10,1,850,1,50,842,1300,962,1,1220,1450,1300,1,1370,1810,1700,26,
%U 1682,2500,1850,122,26,2650,2210,10,1,5,2900,170,2810,5,3172,50,3620
%N Sum of squares of unitary, squarefree divisors of n, including 1.
%C If b(n,k) = sum of k-th powers of unitary, squarefree divisors of n, including 1, then b(n,k) is multiplicative with b(p,k)=p^k+1 and b(p^e,k)=1 for e>1.
%C Dirichlet g.f.: zeta(s)*product_{primes p} (1+p^(2-s)-p^(2-2s)). Dirichlet convolution of A000012 with the multiplicative sequence 1, 4, 9, -4, 25, 36, 49, 0, -9, 100, 121, -36, 169, 196,... - _R. J. Mathar_, Aug 28 2011
%H Amiram Eldar, <a href="/A091306/b091306.txt">Table of n, a(n) for n = 1..10000</a>
%F Multiplicative with a(p)=p^2+1 and a(p^e)=1 for e>1.
%F From _Vaclav Kotesovec_, Nov 20 2021: (Start)
%F Dirichlet g.f.: zeta(s) * zeta(s-2) * Product_{primes p} (1 + p^(4 - 3*s) - p^(2 - 2*s) - p^(4 - 2*s)).
%F Sum_{k=1..n} a(k) ~ c * zeta(3) * n^3 / 3, where c = Product_{primes p} (1 - 1/p^2 - 1/p^4 + 1/p^5) = 0.576152735385667059520611078264117275406247116802896188...
%F (End)
%t f[p_, e_] := If[e == 1, p^2 + 1, 1]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* _Amiram Eldar_, Aug 30 2019*)
%Y Cf. A056671, A092261.
%K mult,easy,nonn
%O 1,2
%A _Vladeta Jovovic_, Feb 23 2004