login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A369377
a(n) is the number of elements p(j) < j (left displacements) in the n-th permutation in lexicographic order.
2
0, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 2, 2, 3, 2, 2, 1, 2, 2, 1, 2, 2, 2, 3, 2, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 2, 2, 3, 2, 2, 1, 2, 2, 2, 3, 2, 2, 3, 2, 1, 2, 1, 1, 2, 1, 2, 2, 2, 2, 2, 2, 3, 2, 3, 2, 2, 2, 3, 3, 2, 2, 3, 3, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 2, 2, 4, 3, 3, 2, 3, 3, 3, 2, 2, 1, 2, 2, 3, 2, 3, 2, 2, 2, 3, 3, 3, 3, 2, 2
OFFSET
0,5
FORMULA
a(n) + A369376(n) = A055093(n).
EXAMPLE
In the following dots are used for zeros in the permutations and their inverses.
n: permutation inv. perm. a(n)
0: [ . 1 2 3 ] [ . 1 2 3 ] 0
1: [ . 1 3 2 ] [ . 1 3 2 ] 1
2: [ . 2 1 3 ] [ . 2 1 3 ] 1
3: [ . 2 3 1 ] [ . 3 1 2 ] 1
4: [ . 3 1 2 ] [ . 2 3 1 ] 2
5: [ . 3 2 1 ] [ . 3 2 1 ] 1
6: [ 1 . 2 3 ] [ 1 . 2 3 ] 1
7: [ 1 . 3 2 ] [ 1 . 3 2 ] 2
8: [ 1 2 . 3 ] [ 2 . 1 3 ] 1
9: [ 1 2 3 . ] [ 3 . 1 2 ] 1
10: [ 1 3 . 2 ] [ 2 . 3 1 ] 2
11: [ 1 3 2 . ] [ 3 . 2 1 ] 1
12: [ 2 . 1 3 ] [ 1 2 . 3 ] 2
13: [ 2 . 3 1 ] [ 1 3 . 2 ] 2
14: [ 2 1 . 3 ] [ 2 1 . 3 ] 1
15: [ 2 1 3 . ] [ 3 1 . 2 ] 1
16: [ 2 3 . 1 ] [ 2 3 . 1 ] 2
17: [ 2 3 1 . ] [ 3 2 . 1 ] 2
18: [ 3 . 1 2 ] [ 1 2 3 . ] 3
19: [ 3 . 2 1 ] [ 1 3 2 . ] 2
20: [ 3 1 . 2 ] [ 2 1 3 . ] 2
21: [ 3 1 2 . ] [ 3 1 2 . ] 1
22: [ 3 2 . 1 ] [ 2 3 1 . ] 2
23: [ 3 2 1 . ] [ 3 2 1 . ] 2
CROSSREFS
KEYWORD
nonn
AUTHOR
Joerg Arndt, Jan 22 2024
STATUS
approved