login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) is the number of elements p(j) < j (left displacements) in the n-th permutation in lexicographic order.
2

%I #11 Jan 22 2024 03:54:25

%S 0,1,1,1,2,1,1,2,1,1,2,1,2,2,1,1,2,2,3,2,2,1,2,2,1,2,2,2,3,2,1,2,1,1,

%T 2,1,2,2,1,1,2,2,3,2,2,1,2,2,2,3,2,2,3,2,1,2,1,1,2,1,2,2,2,2,2,2,3,2,

%U 3,2,2,2,3,3,2,2,3,3,2,2,1,1,2,2,2,2,2,2,2,2,3,3,3,3,2,2,4,3,3,2,3,3,3,2,2,1,2,2,3,2,3,2,2,2,3,3,3,3,2,2

%N a(n) is the number of elements p(j) < j (left displacements) in the n-th permutation in lexicographic order.

%H Joerg Arndt, <a href="/A369377/b369377.txt">Table of n, a(n) for n = 0..40319</a>

%F a(n) + A369376(n) = A055093(n).

%e In the following dots are used for zeros in the permutations and their inverses.

%e n: permutation inv. perm. a(n)

%e 0: [ . 1 2 3 ] [ . 1 2 3 ] 0

%e 1: [ . 1 3 2 ] [ . 1 3 2 ] 1

%e 2: [ . 2 1 3 ] [ . 2 1 3 ] 1

%e 3: [ . 2 3 1 ] [ . 3 1 2 ] 1

%e 4: [ . 3 1 2 ] [ . 2 3 1 ] 2

%e 5: [ . 3 2 1 ] [ . 3 2 1 ] 1

%e 6: [ 1 . 2 3 ] [ 1 . 2 3 ] 1

%e 7: [ 1 . 3 2 ] [ 1 . 3 2 ] 2

%e 8: [ 1 2 . 3 ] [ 2 . 1 3 ] 1

%e 9: [ 1 2 3 . ] [ 3 . 1 2 ] 1

%e 10: [ 1 3 . 2 ] [ 2 . 3 1 ] 2

%e 11: [ 1 3 2 . ] [ 3 . 2 1 ] 1

%e 12: [ 2 . 1 3 ] [ 1 2 . 3 ] 2

%e 13: [ 2 . 3 1 ] [ 1 3 . 2 ] 2

%e 14: [ 2 1 . 3 ] [ 2 1 . 3 ] 1

%e 15: [ 2 1 3 . ] [ 3 1 . 2 ] 1

%e 16: [ 2 3 . 1 ] [ 2 3 . 1 ] 2

%e 17: [ 2 3 1 . ] [ 3 2 . 1 ] 2

%e 18: [ 3 . 1 2 ] [ 1 2 3 . ] 3

%e 19: [ 3 . 2 1 ] [ 1 3 2 . ] 2

%e 20: [ 3 1 . 2 ] [ 2 1 3 . ] 2

%e 21: [ 3 1 2 . ] [ 3 1 2 . ] 1

%e 22: [ 3 2 . 1 ] [ 2 3 1 . ] 2

%e 23: [ 3 2 1 . ] [ 3 2 1 . ] 2

%Y Cf. A369376, A055093, A034968.

%K nonn

%O 0,5

%A _Joerg Arndt_, Jan 22 2024