login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A340101
Number of factorizations of 2n + 1 into odd factors > 1.
28
1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 2, 3, 1, 1, 2, 2, 1, 2, 1, 1, 4, 1, 2, 2, 1, 2, 2, 1, 1, 4, 2, 1, 2, 1, 1, 4, 2, 1, 5, 1, 2, 2, 1, 2, 2, 2, 1, 4, 1, 1, 5, 1, 1, 2, 1, 2, 4, 2, 2, 2, 3, 1, 2, 1, 2, 7, 1, 1, 2, 2, 2, 4, 1, 1, 4, 2, 1, 2, 2, 1, 5, 1, 2, 4, 1, 4, 2, 1, 1, 2, 2, 2, 7, 1, 1, 5, 1, 1, 2, 2, 2, 4, 2
OFFSET
0,5
LINKS
FORMULA
a(n) = A001055(2n+1).
a(n) = A349907(2n+1). - Antti Karttunen, Dec 13 2021
EXAMPLE
The factorizations for 2n + 1 = 27, 45, 135, 225, 315, 405, 1155:
27 45 135 225 315 405 1155
3*9 5*9 3*45 3*75 5*63 5*81 15*77
3*3*3 3*15 5*27 5*45 7*45 9*45 21*55
3*3*5 9*15 9*25 9*35 15*27 33*35
3*5*9 15*15 15*21 3*135 3*385
3*3*15 5*5*9 3*105 5*9*9 5*231
3*3*3*5 3*3*25 5*7*9 3*3*45 7*165
3*5*15 3*3*35 3*5*27 11*105
3*3*5*5 3*5*21 3*9*15 3*5*77
3*7*15 3*3*5*9 3*7*55
3*3*5*7 3*3*3*15 5*7*33
3*3*3*3*5 3*11*35
5*11*21
7*11*15
3*5*7*11
MAPLE
g:= proc(n, k) option remember; `if`(n>k, 0, 1)+
`if`(isprime(n), 0, add(`if`(d>k, 0, g(n/d, d)),
d=numtheory[divisors](n) minus {1, n}))
end:
a:= n-> g(2*n+1$2):
seq(a(n), n=0..100); # Alois P. Heinz, Dec 30 2020
MATHEMATICA
facs[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[facs[n/d], Min@@#>=d&]], {d, Rest[Divisors[n]]}]];
Table[Length[Select[facs[n], OddQ[Times@@#]&]], {n, 1, 100, 2}]
PROG
(PARI)
A001055(n, m=n) = if(1==n, 1, my(s=0); fordiv(n, d, if((d>1)&&(d<=m), s += A001055(n/d, d))); (s)); \\ After code in A001055
A340101(n) = A001055(n+n+1); \\ Antti Karttunen, Dec 13 2021
CROSSREFS
The version for partitions is A160786, ranked by A300272.
The even version is A340785.
The odd-length case is A340102.
A000009 counts partitions into odd parts, ranked by A066208.
A001055 counts factorizations, with strict case A045778.
A027193 counts partitions of odd length, ranked by A026424.
A058695 counts partitions of odd numbers, ranked by A300063.
A316439 counts factorizations by product and length.
Odd bisection of A001055, and also of A349907.
Sequence in context: A193773 A369377 A091304 * A049847 A255274 A025431
KEYWORD
nonn
AUTHOR
Gus Wiseman, Dec 28 2020
EXTENSIONS
Data section extended up to 105 terms by Antti Karttunen, Dec 13 2021
STATUS
approved