login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of factorizations of 2n + 1 into odd factors > 1.
28

%I #15 Dec 14 2021 05:46:23

%S 1,1,1,1,2,1,1,2,1,1,2,1,2,3,1,1,2,2,1,2,1,1,4,1,2,2,1,2,2,1,1,4,2,1,

%T 2,1,1,4,2,1,5,1,2,2,1,2,2,2,1,4,1,1,5,1,1,2,1,2,4,2,2,2,3,1,2,1,2,7,

%U 1,1,2,2,2,4,1,1,4,2,1,2,2,1,5,1,2,4,1,4,2,1,1,2,2,2,7,1,1,5,1,1,2,2,2,4,2

%N Number of factorizations of 2n + 1 into odd factors > 1.

%H Antti Karttunen, <a href="/A340101/b340101.txt">Table of n, a(n) for n = 0..32768</a>

%F a(n) = A001055(2n+1).

%F a(n) = A349907(2n+1). - _Antti Karttunen_, Dec 13 2021

%e The factorizations for 2n + 1 = 27, 45, 135, 225, 315, 405, 1155:

%e 27 45 135 225 315 405 1155

%e 3*9 5*9 3*45 3*75 5*63 5*81 15*77

%e 3*3*3 3*15 5*27 5*45 7*45 9*45 21*55

%e 3*3*5 9*15 9*25 9*35 15*27 33*35

%e 3*5*9 15*15 15*21 3*135 3*385

%e 3*3*15 5*5*9 3*105 5*9*9 5*231

%e 3*3*3*5 3*3*25 5*7*9 3*3*45 7*165

%e 3*5*15 3*3*35 3*5*27 11*105

%e 3*3*5*5 3*5*21 3*9*15 3*5*77

%e 3*7*15 3*3*5*9 3*7*55

%e 3*3*5*7 3*3*3*15 5*7*33

%e 3*3*3*3*5 3*11*35

%e 5*11*21

%e 7*11*15

%e 3*5*7*11

%p g:= proc(n, k) option remember; `if`(n>k, 0, 1)+

%p `if`(isprime(n), 0, add(`if`(d>k, 0, g(n/d, d)),

%p d=numtheory[divisors](n) minus {1, n}))

%p end:

%p a:= n-> g(2*n+1$2):

%p seq(a(n), n=0..100); # _Alois P. Heinz_, Dec 30 2020

%t facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];

%t Table[Length[Select[facs[n],OddQ[Times@@#]&]],{n,1,100,2}]

%o (PARI)

%o A001055(n, m=n) = if(1==n, 1, my(s=0); fordiv(n, d, if((d>1)&&(d<=m), s += A001055(n/d, d))); (s)); \\ After code in A001055

%o A340101(n) = A001055(n+n+1); \\ _Antti Karttunen_, Dec 13 2021

%Y The version for partitions is A160786, ranked by A300272.

%Y The even version is A340785.

%Y The odd-length case is A340102.

%Y A000009 counts partitions into odd parts, ranked by A066208.

%Y A001055 counts factorizations, with strict case A045778.

%Y A027193 counts partitions of odd length, ranked by A026424.

%Y A058695 counts partitions of odd numbers, ranked by A300063.

%Y A316439 counts factorizations by product and length.

%Y Cf. A000700, A002033, A027187, A028260, A074206, A078408, A174726, A236914, A320732, A339846.

%Y Odd bisection of A001055, and also of A349907.

%K nonn

%O 0,5

%A _Gus Wiseman_, Dec 28 2020

%E Data section extended up to 105 terms by _Antti Karttunen_, Dec 13 2021