login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A340102
Number of factorizations of 2n + 1 into an odd number of odd factors > 1.
24
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1
OFFSET
0,14
EXAMPLE
The factorizations for 2n + 1 = 135, 225, 315, 405, 675, 1155, 1215:
135 225 315 405 675 1155 1215
3*5*9 5*5*9 5*7*9 5*9*9 3*3*75 3*5*77 3*5*81
3*3*15 3*3*25 3*3*35 3*3*45 3*5*45 3*7*55 3*9*45
3*5*15 3*5*21 3*5*27 3*9*25 5*7*33 5*9*27
3*7*15 3*9*15 5*5*27 3*11*35 9*9*15
3*3*3*3*5 5*9*15 5*11*21 3*15*27
3*15*15 7*11*15 3*3*135
3*3*3*5*5 3*3*3*5*9
3*3*3*3*15
MAPLE
g:= proc(n, k, t) option remember; `if`(n>k, 0, t)+
`if`(isprime(n), 0, add(`if`(d>k, 0, g(n/d, d, 1-t)),
d=numtheory[divisors](n) minus {1, n}))
end:
a:= n-> `if`(n=0, 0, g(2*n+1$2, 1)):
seq(a(n), n=0..100); # Alois P. Heinz, Dec 30 2020
MATHEMATICA
facs[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[facs[n/d], Min@@#>=d&]], {d, Rest[Divisors[n]]}]];
Table[Length[Select[facs[n], OddQ[Length[#]]&&OddQ[Times@@#]&]], {n, 1, 100, 2}];
CROSSREFS
The version for partitions is A160786, ranked by A300272.
The not necessarily odd-length version is A340101.
A000009 counts partitions into odd parts, ranked by A066208.
A001055 counts factorizations, with strict case A045778.
A027193 counts partitions of odd length, ranked by A026424.
A058695 counts partitions of odd numbers, ranked by A300063.
A316439 counts factorizations by product and length.
Sequence in context: A043282 A031226 A031242 * A031260 A360157 A298735
KEYWORD
nonn
AUTHOR
Gus Wiseman, Dec 30 2020
STATUS
approved