login
A360157
a(n) is the number of unitary divisors of n that are odd squares.
2
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1
OFFSET
1,9
COMMENTS
First differs from A298735 at n = 27.
The unitary analog of A298735.
The least term that is larger than 2 is a(225) = 4.
LINKS
FORMULA
Multiplicative with a(2^e) = 1, and for p > 2, a(p^e) = 1 if e is odd and 2 if e is even.
Dirichlet g.f.: (zeta(s)*zeta(2*s)/zeta(3*s)) * (4^s + 2^s)/(4^s + 2^s + 1).
Sum_{k=1..n} a(k) ~ c * n, where c = Pi^2/(7*zeta(3)) = 1.172942380817... .
More precise asymptotics: Sum_{k=1..n} a(k) ~ Pi^2 * n / (7*zeta(3)) + (4 + sqrt(2)) * zeta(1/2) * sqrt(n) / (7*zeta(3/2)). - Vaclav Kotesovec, Jan 29 2023
MATHEMATICA
f[p_, e_] := If[OddQ[e], 1, 2]; f[2, e_] := 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
PROG
(PARI) a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 2]%2, 1, if(f[i, 1] == 2, 1, 2))); }
CROSSREFS
KEYWORD
nonn,easy,mult
AUTHOR
Amiram Eldar, Jan 29 2023
STATUS
approved